Abstract:
This paper introduces the project ADIAC (Automatic Diatom Identification and Classification), which started in May 1998 and which is financed by the European MAST (Marine...Show MoreMetadata
Abstract:
This paper introduces the project ADIAC (Automatic Diatom Identification and Classification), which started in May 1998 and which is financed by the European MAST (Marine Science and Technology) programme. The main goal is to develop algorithms for an automatic identification of diatoms using image information, both valve shape (contour) and ornamentation. The paper presents the goals of the project as well as first results on shape modeling and contour extraction. Public data are available in order to create student projects beyond the ADIAC partnership.
Date of Conference: 27-29 September 1999
Date Added to IEEE Xplore: 06 August 2002
Print ISBN:0-7695-0040-4
Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (10)
Select All
1.
Aishwarya Venkataramanan, Assia Benbihi, Martin Laviale, Cédric Pradalier, "Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep Classifiers", 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp.4490-4499, 2023.
2.
Eduardo Gessel Pacheco-Venegas, Isabel Israde-Alcántara, Josué Álvarez-Borrego, "Binary Masks of Concentric Rings as a Method to Approximate Identification of Diatoms Using Images", IEEE Access, vol.8, pp.141497-141510, 2020.
3.
Joviša Žunić, Paul L. Rosin, "Measuring Shapes with Desired Convex Polygons", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.42, no.6, pp.1394-1407, 2020.
4.
Dragomir Yankov, Eamonn Keogh, "Manifold Clustering of Shapes", Sixth International Conference on Data Mining (ICDM'06), pp.1167-1171, 2006.
5.
M.A. Wirth, D. Nikitenko, "Applications of fuzzy morphology to contrast enhancement", NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society, pp.355-360, 2005.
6.
Y. Hicks, D. Marshall, R.R. Martin, P.L. Rosin, M.M. Bayer, D.G. Mann, "Automatic landmarking for building biological shape models", Proceedings. International Conference on Image Processing, vol.2, pp.II-II, 2002.
7.
T. Alvarez, Y. Martin, S. Perez, F. Santos, F. Tadeo, S. Gonzalez, J.L. Arribas, P. Vega, "Classification of microorganisms using image processing techniques", Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), vol.1, pp.329-332 vol.1, 2001.
8.
A. Ciobanu, H. Shahbazkia, H. Du Buf, "Contour profiling by dynamic ellipse fitting", Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol.3, pp.750-753 vol.3, 2000.
9.
S. Fischer, M. Binkert, H. Bunke, "Symmetry based indexing of diatoms in an image database", Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol.2, pp.895-898 vol.2, 2000.
10.
M.H.F. Wilkinson, J.B.T.M. Roerdink, S. Droop, M. Bayer, "Diatom contour analysis using morphological curvature scale spaces", Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol.3, pp.652-655 vol.3, 2000.
Cites in Papers - Other Publishers (16)
1.
Tuomas Eerola, Daniel Batrakhanov, Nastaran Vatankhah Barazandeh, Kaisa Kraft, Lumi Haraguchi, Lasse Lensu, Sanna Suikkanen, Jukka Seppälä, Timo Tamminen, Heikki Kälviäinen, "Survey of automatic plankton image recognition: challenges, existing solutions and future perspectives", Artificial Intelligence Review, vol.57, no.5, 2024.
2.
Huseyin Gunduz, Serkan Gunal, "A lightweight convolutional neural network (CNN) model for diatom classification: DiatomNet", PeerJ Computer Science, vol.10, pp.e1970, 2024.
3.
Siyue Pu , Fan Zhang , Yuexuan Shu , Weiqi Fu , " Microscopic image recognition of diatoms based on deep learning ", Journal of Phycology , 2023 .
4.
Aishwarya Venkataramanan, Pierre Faure-Giovagnoli, Cyril Regan, David Heudre, Cecile Figus, Philippe Usseglio-Polatera, Cedric Pradalier, Martin Laviale, "Usefulness of synthetic datasets for diatom automatic detection using a deep-learning approach", Engineering Applications of Artificial Intelligence, vol.117, pp.105594, 2023.
5.
Michael H. F. Wilkinson, "Component-Tree Simplification Through Fast Alpha Cuts", Discrete Geometry and Mathematical Morphology, vol.13493, pp.236, 2022.
6.
Pierluigi Carcagni, Andouglas Goncalves da Silva, Pasquale Memmolo, Vittorio Bianco, Francesco Merola, Luiz Goncalves, Andouglas Silva, Pietro Ferraro, Cosimo Distante, "An investigation on deep learning approaches for diatoms classification", Multimodal Sensing and Artificial Intelligence: Technologies and Applications II, pp.23, 2021.
7.
Jesus Salido, Carlos Sanchez, Jesus Ruiz-Santaquiteria, Gabriel Cristobal, Saul Blanco, Gloria Bueno, "A Low-Cost Automated Digital Microscopy Platform for Automatic Identification of Diatoms", Applied Sciences, vol.10, no.17, pp.6033, 2020.
8.
Jose Libreros, Gloria Bueno, Maria Trujillo, Maria Ospina, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, vol.11401, pp.496, 2019.
9.
Jose Libreros, Gloria Bueno, Maria Trujillo, Maria Ospina, Advances in Computing, vol.885, pp.83, 2018.
10.
Shireen Y. Elhabian, Ross T. Whitaker, Information Processing in Medical Imaging, vol.10265, pp.93, 2017.
11.
John P. Smol, Eugene F. Stoermer, "Epilogue: reflections on the past and a view to the future", The Diatoms, pp.611, 2010.
12.
H. John B. Birks, "Numerical methods for the analysis of diatom assemblage data", The Diatoms, pp.23, 2010.
13.
Andrei C. Jalba, Michael H. F. Wilkinson, Jos B. T. M. Roerdink, Micha M. Bayer, Stephen Juggins, "Automatic diatom identification using contour analysis by morphological curvature scale spaces", Machine Vision and Applications, vol.16, no.4, pp.217, 2005.
14.
Changming Sun, Stefano Pallottino, "Circular shortest path in images", Pattern Recognition, vol.36, no.3, pp.709, 2003.
15.
Micha M. Bayer, Stephen J. M. Droop, David G. Mann, "Digital microscopy in phycological research, with special reference to microalgae", Phycological Research, vol.49, no.4, pp.263, 2001.
16.
Stefan Fischer, Michael Binkert, Horst Bunke, Mustererkennung 2000, pp.444, 2000.