Loading [MathJax]/extensions/MathZoom.js
A Compact Analog Complex Cross-Correlator for Passive Millimeter-Wave Imager | IEEE Journals & Magazine | IEEE Xplore

A Compact Analog Complex Cross-Correlator for Passive Millimeter-Wave Imager


Abstract:

The design, analysis, implementation, and measurement of a compact analog complex cross-correlator for passive millimeter-wave imaging applications are presented in this ...Show More

Abstract:

The design, analysis, implementation, and measurement of a compact analog complex cross-correlator for passive millimeter-wave imaging applications are presented in this paper. The correlator uses the “add and square” and “subtract and square” detection scheme by adopting the Schottky diodes and RF distribution network. Meanwhile, in order to realize the correlator with a compact size and low cost, commercially available surface mounting devices and multilayer PCB technique are employed. The relationship between the phase error of the correlator and the phase unbalance of the RF distribution network is also analyzed. Single-frequency test is applied to the correlator, and the results of the measurement reveal that the correlator operates well within the frequency range of 1.5–2.5 GHz. Moreover, a measurement system based on an actual imaging scenario is also developed to characterize the performance of the correlator when injected with correlated broadband noise signals, and the measurement results show that the correlator is well suited for imaging applications. The bandwidth of the current version correlator is around 1 GHz, but it could easily be changed by replacing distributed components.
Published in: IEEE Transactions on Instrumentation and Measurement ( Volume: 66, Issue: 11, November 2017)
Page(s): 2997 - 3006
Date of Publication: 26 June 2017

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Interferometric imaging techniques are widely used in a variety of applications, such as satellite remote sensing [1], radio astronomy [2], and security sensing [3], [4]. For the interferometric imagers, the image is reconstructed through the complex cross correlation of the signals received from each antenna pairs [4], [5]. Since the correlator is used to perform the cross correlation measurement (which is also termed as visibility function measurement) [6], it plays an important role in the interferometric imagers [7].

Select All
1.
C. S. Ruf, C. T. Swift, A. B. Tanner and D. M. Le Vine, "Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth", IEEE Trans. Geosci. Remote Sens., vol. 26, no. 5, pp. 597-611, Sep. 1988.
2.
A. R. Thompson, J. M. Moran and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy, New York, NY, USA:Wiley, 2001.
3.
L. Yujiri, M. Shoucri and P. Moffa, "Passive millimeter-wave imaging", IEEE Micro., vol. 4, no. 3, pp. 39-50, Sep. 2003.
4.
J. Nanzer, Microwave and Millimeter-Wave Remote Sensing for Security Applications, Norwood, MA, USA:Artech House, 2012.
5.
I. Corbella, A. Camps, F. Torres and J. Bara, "Analysis of noise-injection networks for interferometric-radiometer calibration", IEEE Trans. Microw. Theory Techn., vol. 48, no. 4, pp. 545-552, Apr. 2000.
6.
C. S. Ruf, "Digital correlators for synthetic aperture interferometric radiometry", IEEE Trans. Geosci. Remote Sens., vol. 33, no. 5, pp. 1222-1229, Sep. 1995.
7.
C. M. Holler, M. E. Jones, A. C. Taylor, A. I. Harris and S. A. Maas, "A 2–20-GHz analog lag correlator for radio interferometry", IEEE Trans. Instrum. Meas., vol. 61, no. 8, pp. 2253-2261, Aug. 2012.
8.
C.-T. Li et al., "A wideband analog correlator system for AMiBA", Proc. SPIE, vol. 5498, pp. 455-463, Oct. 2004.
9.
S. Padin, "A wideband analog continuum correlator for radio astronomy", IEEE Trans. Instrum. Meas., vol. 43, no. 6, pp. 782-785, Dec. 1994.
10.
C.-T. Li et al., "AMiBA wideband analog correlator", Astrophys. J., vol. 716, no. 1, pp. 746-757, Jun. 2010.
11.
A. I. Harris and J. Zmuidzinas, "A wideband lag correlator for heterodyne spectroscopy of broad astronomical and atmospheric spectral lines", Rev. Sci. Instrum., vol. 72, no. 2, pp. 1531-1538, Feb. 2001.
12.
C. M. Holler, T. Kaneko, M. E. Jones, K. Grainge and P. Scott, "A 6–12 GHz analogue lag-correlator for radio interferometry", Astron. Astrophys., vol. 464, pp. 795-806, 2007.
13.
J. T. L. Zwart et al., "The arcminute microkelvin imager", Mon. Not. R. Astron. Soc., vol. 391, no. 4, pp. 1545-1558, 2008.
14.
S. Padin, J. K. Cartwright, M. C. Shepherd, J. K. Yamasaki and W. L. Holzapfel, "A wideband analog correlator for microwave background observations", IEEE Trans. Instrum. Meas., vol. 50, no. 5, pp. 1234-1240, Oct. 2001.
15.
O. Koistinen, J. Lahtinen and M. T. Hallikainen, "Comparison of analog continuum correlators for remote sensing and radio astronomy", IEEE Trans. Instrum. Meas., vol. 51, no. 2, pp. 227-234, Apr. 2002.
16.
R. C. Toonen, C. C. Haselby and R. H. Blick, "An ultrawideband cross-correlation radiometer for mesoscopic experiments", IEEE Trans. Instrum. Meas., vol. 57, no. 12, pp. 2874-2879, Dec. 2008.
17.
N. A. Salmon, P. N. Wilkinson, C. T. Taylor and M. Benyezzar, "Minimising the costs of next generation aperture synthesis passive millimetre wave imagers", Proc. SPIE, vol. 8188, pp. 818808-1-818808-6, Oct. 2011.
18.
N. A. Salmon et al., "An all electronic passive millimetre wave imaging system", Proc. SPIE, vol. 5789, pp. 11-15, May 2005.
19.
C. Zheng, X. Yao, A. Hu and J. Miao, "A passive millimeter-wave imager used for concealed weapon detection", Prog. Electromagn. Res. B, vol. 46, pp. 379-397, 2013.
20.
X. Yao, C. Zheng, J. Zhang, Z. Li and J. Miao, "Analysis of uncertainty in visibilty samples via average correlation in a synthetic aperture interferometric radiometer", Int. J. Remote Sens., vol. 35, no. 22, pp. 7795-7814, 2014.
21.
M. Kashif, A. Hu and J. Miao, "Design and implementation of an analog complex correlator for passive millimeter wave imaging system", Proc. 13th Int. Bhurban Conf. Appl. Sci. Technol. (IBCAST), pp. 611-616, Jan. 2016.
22.
R. L. Mickelson and G. W. Swenson, "A comparison of two correlation schemes", IEEE Trans. Instrum. Meas., vol. 40, no. 5, pp. 816-819, Oct. 1991.
23.
M. Ryle, "A new radio interferometer and its application to the observation of weak radio stars", Proc. R. Soc. A-Math. Phys. Eng. Sci., vol. 211, no. 1106, pp. 351-375, Mar. 1952.
24.
A. M. Cowley and H. O. Sorensen, "Quantitative comparison of solid-state microwave detectors", IEEE Trans. Microw. Theory Techn., vol. 14, no. 12, pp. 588-602, Dec. 1966.
25.
HSMS-285x Series Surface Mount Zero Bias Schottky Detector Diodes HSMS-285x Datasheet, 2009, [online] Available: https://docs.broadcom.com/docs/AV02-1377EN.
26.
M. Patrashin et al., "GaAsSb/InAlAs/InGaAs tunnel diodes for millimeter wave detection in 220–330-GHz band", IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 1068-1071, Mar. 2015.
27.
N. Chernov, Circular and linear regression: Fitting circles and lines by least squares, Boca Raton, FL, USA:CRC Press, 2010.
28.
C. S. Ruf and J. Li, "A correlated noise calibration standard for interferometric polarimetric and autocorrelation microwave radiometers", IEEE Trans. Geosci. Remote Sens., vol. 41, no. 10, pp. 2187-2196, Oct. 2003.
29.
J. Laskar, M. Babak and C. Sudipto, Modern Receiver Front-Ends: Systems Circuits and Integration, Hoboken, NJ, USA:Wiley, 2004.
30.
D. M. Pozar, Microwave Engineering, New York, NY, USA:Wiley, 2012.
Contact IEEE to Subscribe

References

References is not available for this document.