Abstract:
This paper presents a novel soft-switching galvanically isolated buck-boost dc-dc converter as a module-integrated converter for photovoltaic (PV) applications. It featur...Show MoreMetadata
Abstract:
This paper presents a novel soft-switching galvanically isolated buck-boost dc-dc converter as a module-integrated converter for photovoltaic (PV) applications. It features three major operating modes: boost, normal, and buck mode. Their proper distribution over the input voltage range enables wide voltage regulation capabilities, i.e., close to those of nonisolated power optimizers. The proposed control algorithm requires only one buck-boost switching stage that performs voltage regulation by means of the switching stage reconfiguration with smooth transition between the modes. The design guidelines and the digital control system for PV applications are provided. The module-integrated converter was verified experimentally with a solar array simulator. The converter showed good maximum power point tracking performance and a peak efficiency of nearly 97%.
Published in: IEEE Transactions on Industrial Electronics ( Volume: 64, Issue: 7, July 2017)
Funding Agency:
References is not available for this document.
Select All
1.
S. Kouro, J. I. Leon, D. Vinnikov and L. G. Franquelo, "Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology", IEEE Ind. Electron. Mag., vol. 9, no. 1, pp. 47-61, Mar. 2015.
2.
F. Blaabjerg, Z., Chen and S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems", IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184-1194, Sep. 2004.
3.
R. Pilawa-Podgurski and D. J. Perreault, "Submodule integrated distributed maximum power point tracking for solar photovoltaic applications", IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2957-2967, Jun. 2013.
4.
S. M. MacAlpine, R. W. Erickson and M. J. Brandemuehl, "Characterization of power optimizer potential to increase energy capture in photovoltaic systems operating under nonuniform conditions", IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2936-2945, Jun. 2013.
5.
R. Orduz, J. Solorzano, M. A. Egido and E. Roman, "Analytical study and evaluation results of power optimizers for distributed power conditioning in photovoltaic arrays", Prog. Photovolt. Res. Appl., vol. 21, no. 2, pp. 359-373, Nov. 2011.
6.
H. A. Sher and K. E. Addoweesh, "Micro-inverters—Promising solutions in solar photovoltaics", Energy Sustain. Develop., vol. 16, no. 4, pp. 389-400, Dec. 2012.
7.
S. B. Kjaer, J. K. Pedersen and F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules", IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292-1306, Sep./Oct. 2005.
8.
Q. Li and P. Wolfs, "A review of the single phase photovoltaic module integrated converter topologies with three different dc link configurations", IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320-1333, May 2008.
9.
S. Harb, M. Kedia, H. Zhang and R. S. Balog, "Microinverter and string inverter grid-connected photovoltaic system—A comprehensive study", Proc. 39th Photovolt. Spec. Conf., pp. 2885-2890, 2013.
10.
H. Hu et al., "A three-port flyback for PV microinverter applications with power pulsation decoupling capability", IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3953-3964, Sep. 2012.
11.
R. S. Figueredo, K. C. M. de Carvalho and L. Matakas, "Integrated common and differential mode filter applied to a single-phase transformerless PV microinverter with low leakage current", Proc. Int. Power Electron. Conf.-Hiroshima 2014—ECCE ASIA, pp. 2618-2625, 2014.
12.
D. Vinnikov, A. Chub, I. Roasto and L. Liivik, "Multi-mode quasi-Z-source series resonant dc/dc converter for wide input voltage range applications", Proc. Appl. Power Electron. Conf. Expo., pp. 2533-2539, Mar. 2016.
13.
D. Vinnikov, A. Chub, E. Liivik and I. Roasto, "High-performance quasi-Z-source series resonant dc–dc converter for photovoltaic module level power electronics applications", IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3634-3650, May 2017.
14.
T. LaBella, W. Yu, J.-S. Lai, M. Senesky and D. Anderson, "A bidirectional-switch-based wide-input range high-efficiency isolated resonant converter for photovoltaic applications", IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3473-3484, Jul. 2014.
15.
T. LaBella and J. S. Lai, "A hybrid resonant converter utilizing a bidirectional GaN ac switch for high-efficiency PV applications", IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3468-3475, Sep./Oct. 2014.
16.
Y. Lu, H. Wu, K. Sun and Y. Xing, "A family of isolated buck-boost converters based on semiactive rectifiers for high-output voltage applications", IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6327-6340, Sep. 2016.
17.
A. Chub, D. Vinnikov, F. Blaabjerg and F. Z. Peng, "A review of galvanically isolated impedance-source dc–dc converters", IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2808-2828, Apr. 2016.
18.
J. Zakis, I. Rankis and L. Liivik, "Loss reduction method for the isolated qZS-based dc/dc converter", Elect. Control Commun. Eng., vol. 4, pp. 13-18, 2013.
19.
I. Roasto, D. Vinnikov, T. Jalakas, J. Zakis and S. Ott, "Experimental study of shoot-through control methods for qZSI-based dc/dc converters", Proc. Int. Symp. Power Electron. Electr. Drives Autom. Motion, pp. 29-34, 2010.
20.
L. Liivik, "Semiconductor power loss reduction and efficiency improvement techniques for the galvanically isolated quasi-Z-source dc–dc converters", 2015.
21.
M. M. Jovanović and B. T. Irving, "On-the-fly topology-morphing control—Efficiency optimization method for LLC resonant converters operating in wide input- and/or output-voltage range", IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2596-2608, Mar. 2016.
22.
L. Liivik, A. Chub, D. Vinnikov and J. Zakis, "Experimental study of high step-up quasi-Z-source dc–dc converter with synchronous rectification", Proc. 9th Int. Conf. Compat. Power Electron., pp. 409-414, 2015.
23.
D. Vinnikov and I. Roasto, "Quasi-Z-source-based isolated dc/dc converters for distributed power generation", IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 192-201, Jan. 2011.
24.
A. Chub and D. Vinnikov, "Single-switch galvanically isolated quasi-Z-source dc–dc converter", Proc. 5th Int. Conf. Power Eng. Energy Elect. Drives, pp. 582-586, 2015.
25.
S. Armstrong and W. G. Hurley, "A thermal model for photovoltaic panels under varying atmospheric conditions", Appl. Therm. Eng., vol. 30, pp. 11-12, Aug. 2010.
26.
S. Kapat, S. Banerjee and A. Patra, "Discontinuous map analysis of a dc–dc converter governed by pulse skipping modulation", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 57, no. 7, pp. 1793-1801, Jul. 2010.