Ackerman Mobile Robot with Arm | IEEE Conference Publication | IEEE Xplore

Abstract:

This work presents the design of a wheeled mobile robot (WMR) using an Ackerman configuration. Its design uses the extruded aluminum profile widely used in industry, faci...Show More

Abstract:

This work presents the design of a wheeled mobile robot (WMR) using an Ackerman configuration. Its design uses the extruded aluminum profile widely used in industry, facilitating the assembly of new robotics projects. The design is carried out using CAD software and shows some of the various benefits of these tools. The environmental impact values for a bar of extruded aluminum profile throughout its lifecycle was calculated and, later, analyzed by using SolidWorks simulationXpress study to improve the sustainability of the WMR design. Additionally, images of both the 3D model and the real prototype are presented.
Date of Conference: 22-25 November 2016
Date Added to IEEE Xplore: 26 December 2016
ISBN Information:
Conference Location: Cuernavaca, Mexico
References is not available for this document.

I. Introduction

The WMR is one of the most relevant types of robots. WMRs are employed in planetary exploration, mining, inspection and, surveillance, rescue squads, hazardous waste cleanup, medical assistance, among others. Regarding the scientific scope, most of the research examines control problems [1], such as trajectory tracking [2]–[10], and obstacle avoidance [11]–[16]. These control tasks can be simplified by the proper design and, construction of the WMRs.

Select All
1.
R. S. Ortigoza, M. M. Aranda, G. S. Ortigoza, V. M. H. Guzmán, M. A. M. Vilchis, G. S. González, et al., "Wheeled mobile robots: A review", IEEE Latin America Transactions, vol. 10, no. 6, pp. 2209-2217, 2012.
2.
A. W. Divelbiss and J. T. Wen, "Trajectory tracking control of a car-trailer system", IEEE Transactions on Control Systems Technology, vol. 5, no. 3, pp. 269-278, 1997.
3.
M. Fliess, J. Lévine, P. Martin and P. Rouchon, "Flatness and defect of non-linear systems: Introductory theory and applications", International Journal of Control, vol. 61, no. 6, pp. 1327-1361, 1995.
4.
H. Sira-Ramírez and S. K. Agrawal, Differentially Flat Systems, New York, NY, USA:Marcel Dekker, 2004.
5.
J. A. Chacal B and H. Sira-Ramírez, "On the sliding mode control of wheeled mobile robots", Proc. 1994 IEEE International Conference on Systems Man and Cybernetics, pp. 1938-1943, Oct. 1994.
6.
J. M. Yang, I. H. Choi and J. H. Kim, "Sliding mode control of a nonholonomic wheeled mobile robot for trajectory tracking", Proc. 1998 IEEE International Conference on Robotics and Automation, vol. 4, pp. 2983-2988, May 1998.
7.
F. L. Lewis, C. T. Abdallah and D. M. Dawson, Control of Robot Manipulators, New York, NY, USA:Macmillan, 1993.
8.
R. Silva-Ortigoza, G. Silva-Ortigoza, V. M. Hernández-Guzmán, V. R. Barrientos-Sotelo, J. M. Albarrán-Jiménez and V. M. Silva-García, "Trajectory tracking in a mobile robot without using velocity measurements for control of wheels", IEEE Latin America Transactions, vol. 6, no. 7, pp. 598-607, 2008.
9.
J. L. Avendaño-Juárez, V. M. Hernández-Guzmán and R. Silva-Ortigoza, "Velocity and current inner loops in a wheeled mobile robot", Advanced Robotics, vol. 24, no. 8-9, pp. 1385-1404, 2010.
10.
R. Silva-Ortigoza, C. Márquez-Sánchez, M. Marcelino-Aranda, M. Marciano-Melchor, G. Silva-Ortigoza, R. Bautista-Quintero, et al., "Construction of a WMR for trajectory tracking control: Experimental results", The Scientific World Journal, vol. 2013, pp. 1-17, 2013.
11.
J. L. Crowley, "World modeling and postion estimation for a mobile robot using ultrasonic rangin", Proc. 1989 IEEE International Conference on Robotics and Automation, pp. 674-680, May 1989.
12.
J. T. Schwartz and M. Sharir, "On the piano movers problem: II. General technique for computing topological properties of real algebraic manifolds", Advanced in Applied Mathematics, vol. 4, no. 3, pp. 293-351, 1983.
13.
N. J. Nilsson, "A mobile automaton: An application of artificial intelligence techniques", Proc. International Joint Conference on Artificial Intelligence, pp. 509-520, May 1969.
14.
O. Khatib, "Real-Time obstacle avoidance for manipulators and mobile robots", Proc. 1985 IEEE International Conference on Robotics and Automation, pp. 500-505, March 1985.
15.
J. Borenstein and Y. Koren, "Real-Time obstacle avoidance for fast mobile robots", IEEE Transactions on Systems Man and Cybernetics, vol. 19, no. 5, pp. 1179-1187, 1989.
16.
R. Silva-Ortigoza, C. Márquez-Sánchez, F. Carrizosa-Corral, V. M. Hernández-Guzmán, J. R. García-Sánchez, H. Taud, et al., "Obstacle avoidance task for a weeled mobile robot – A Matlab-Simulink-based didactic application", MATLAB: Applications for the Practical Engineer, pp. 79-102, 2014.
17.
Y. Mae, H. Takahashi, K. Ohara, T. Takubo and T. Araie, "Component-based robot system design for grasping tasks", Intelligent Service Robotics, vol. 4, no. 1, pp. 91-98, 2011.
18.
Y. Wang, H. Lang and C. de Silva, "A hybrid visual servo controller for robust grasping by wheeled mobile robots", IEEE/ASME Transactions on Mechatronics, vol. 15, no. 5, pp. 757-769, 2010.
19.
G. Desouza and A. Kak, "Vision for mobile robot navigation: A survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp. 237-267, 2002.
20.
V. M. Hernández-Guzmán, R. Silva-Ortigoza and R. V. Carrillo-Serrano, Control Automático: Teoría de Diseño Construcción de Prototipos Modelado Identificación y Pruebas Experimentales, 2013, [online] Available: http://www.controlautomatico.com.mx.
21.
R. Shih, Introduction to Finite Element Analysis Using Solid-Works Simulation 2014, Klamath Falls, Oregon, USA:SDC Publications, 2014.
22.
R. Yue, K. Li, J. Du, S. Wang and J. Xiao, "A field robot with rotated-claw wheels", Mobile Robots - State of the Art in Land Sea Air and Collaborative Missions, pp. 33-48, 2009.
23.
A. Silva-Simões, E. Luna-Colombini, J. Paul-Matsuura and M. Nicoletti-Franchin, "TORP: The open robot project", Journal of Intelligent and Robotic Systems, vol. 66, no. 1, pp. 3-22, 2012.
24.
R. A. Orozco-Velázquez, R. Silva-Ortigoza, H. Taud, M. Antonio-Cruz, C. Márquez-Sánchez, C. Y. Sosa-Cervantes, et al., "Mobile robot with grasp manipulator: Mechanical design", Proc. 2014 International Conference on Mechatronics Electronics and Automotive Engineering, pp. 81-85, Nov. 2014.

Contact IEEE to Subscribe

References

References is not available for this document.