Loading [MathJax]/extensions/MathMenu.js
214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module | IEEE Journals & Magazine | IEEE Xplore

214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module


Abstract:

We fabricated a Hi-FIT LE-EADFB laser module. Hi-FIT, which is a wire-free interconnection technique, provides a higher modulation bandwidth and a flatter frequency respo...Show More

Abstract:

We fabricated a Hi-FIT LE-EADFB laser module. Hi-FIT, which is a wire-free interconnection technique, provides a higher modulation bandwidth and a flatter frequency response than a conventional wire interconnection technique. The fabricated module has a 3-dB bandwidth of about 59 GHz and a sufficiently flat frequency response of less than 45 GHz. Using this module, we demonstrated a single-wavelength single-polarization direct-detection 4-PAM transmission with a record net data rate of 200 Gb/s. And with 4-PAM operation at 214 Gb/s, we obtained a BER of less than 3.8 × 10-3, which is an error-free condition using a 7%-OH HD-FEC code, even after a 10-km SMF transmission.
Published in: Journal of Lightwave Technology ( Volume: 35, Issue: 3, 01 February 2017)
Page(s): 418 - 422
Date of Publication: 01 December 2016

ISSN Information:

References is not available for this document.

I. Introduction

Internet traffic is increasing rapidly thanks to the expansion of cloud services. And there is now particular need for high-speed optical communication standards for inter- and intra-data centers. In response to this need, the Ethernet data rate has been increasing continuingly, and 400-gigabit Ethernet (400GbE) is being standardized [1]. It will employ an 4-intensity-level pulse amplitude modulation (PAM) scheme for long reach applications (2- and 10-km single-mode-fiber (SMF) transmissions). And the wavelength band will be 1.3 μm (1270–1310 nm). Optical transmitters have been reported that meet this requirement [2]–[6] . However, a decrease in the number of lanes is desirable to reduce both transceiver size and power consumption.

Select All
1.
May 2016, [online] Available: http://www.ieee802.org/3/bs/.
2.
W. Kobayashi, T. Fujisawa, T. Ito, S. Kanazawa, Y. Ueda and H. Sanjoh, "Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fibre transmission", Electron. Lett., vol. 50, no. 9, pp. 683-685, 2014.
3.
U. Troppenz et al., "1.3 μm electroabsorption modulated lasers for PAM4/PAM8 single channel 100 Gb/s", Proc. 26th Int. Conf. Indium Phosphide Rel. Mater., 2014.
4.
Y. Matsui, T. Pham, T. Sudo, G. Carey and B. Young, "112-Gb/s WDM link using two directly modulated Al-MQW BH DFB lasers at 56 Gb/s", Proc. Opt. Fiber Commun. Conf., 2015.
5.
R. Motaghiannezam et al., "52 Gbps PAM4 receiver sensitivity study for 400GBase-LR8 system using directly modulated laser", Opt. Exp., vol. 24, no. 7, pp. 7374-7380, 2016.
6.
M. Mazzini et al., "25 GBaud PAM-4 error free transmission over both single mode fiber and multimode fiber in a QSFP form factor based on silicon photonics", Proc. Opt. Fiber Commun. Conf., 2015.
7.
S. Kanazawa et al., "Flip-chip interconnection lumped-electrode EADFB laser for 100-Gb/s/λ transmitter", IEEE Photon. Technol. Lett., vol. 27, no. 16, pp. 1699-1701, Aug. 2015.
8.
C. Kazmierski et al., "100 Gb/s operation of an AlGaInAs semi-insulating buried heterojunction EML", Proc. Opt. Fiber Commun. Conf., 2009.
9.
J. Li et al., "112 Gb/s field trial of complete ETDM system based on monolithically integrated transmitter receiver modules for use in 100GbE", Proc. Eur. Conf. Opt. Commun., 2010.
10.
P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk and C. Dorrer, "107-Gb/s optical signal generation using electronic time-division multiplexing", J. Lightw. Technol., vol. 24, no. 8, pp. 3107-3113, Aug. 2006.
11.
Z. Kang Ping et al., "Low cost 400GE transceiver for 2km optical interconnect using PAM4 and direct detection", Proc. Asia Conf. Photon. Conf., 2014.
12.
N. Kikuchi, R. Hirai and T. Fukui, "Practical implementation of 100-Gbit/s/lambda optical short-reach transceiver with nyquist PAM4 signaling using electroabsorptive modulated laser (EML)", Proc. Opt. Fiber Commun. Conf., 2015.
13.
T. K. Chan and W. I. Way, "112 Gb/s PAM4 transmission over 40 km SSMF using 1.3 μm gain-clamped semiconductor optical amplifier", Proc. Opt. Fiber Commun. Conf., 2015.
14.
M. Chagnon et al., "Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm", Opt. Express, vol. 22, no. 17, pp. 21018-21036, 2014.
15.
Y. Kai et al., "Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication", Proc. Eur. Conf. Opt. Commun., 2013.
16.
Q. Zhang, N. Stojanovic, C. Prodaniuc, C. Xie, M. Koenigsmann and P. Laskowski, "Single-lane 180 Gbit/s PAM-4 signal transmission over 2 km SSMF for short-reach applications", Opt. Lett., vol. 41, no. 19, pp. 4449-4452, 2016.
17.
H. C. Chien et al., "160-Gbps/λ IMDD optical links based on Nyquist 256QAM", Proc. Opt. Fiber Commun. Conf., 2016.
18.
H. Yamazaki et al., "Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter", J. Lightw. Technol., vol. 34, no. 7, pp. 1579-1584, Apr. 2016.
19.
M. A. Mestre et al., "Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects", Proc. Eur. Conf. Opt. Commun., 2015.
20.
T. Fujisawa et al., "1.3 mm 50 Gbit/s electroabsorption modulators integrated with DFB laser for beyond 100G parallel LAN applications", Electron. Lett., vol. 47, no. 12, pp. 708-710, 2011.
21.
F. Deshours, C. Algani, F. Blache, G. Alquié, C. Kazmierski and C. Jany, "New nonlinear electrical modeling of high-speed electroabsorption modulators for 40 Gb/s optical networks", J. Lightw. Technol., vol. 29, no. 6, pp. 880-887, Mar. 2011.
22.
Ch. Jany et al., "Semi-Insulating buried heterostructure 1.55 μm InGaAlAs electroabsorption modulated laser with 60 GHz bandwidth", Proc. Eur. Conf. Opt. Commun., 2007.
23.
Y. Ueda et al., "Low driving voltage operation of MZI-type EA modulator integrated with DFB laser using optical absorption and interferometric extinction", J. Sel. Topics Quantum Electron., vol. 21, no. 6, Nov./Dec. 2015.
24.
S. Kanazawa et al., "Transmission of 214-Gbit/s 4-PAM signal using an ultrabroadband lumped-electrode EADFB laser module", Proc. Opt. Fiber Commun. Conf., 2016.
25.
Y. Muramoto and T. Ishibashi, "InP/InGaAs pin photodiode structure maximising bandwidth and efficiency", Electron. Lett., vol. 39, no. 24, pp. 1749-1750, 2003.
26.
2004.
Contact IEEE to Subscribe

References

References is not available for this document.