Abstract:
A combination of surface- and bulk-micromachining techniques is used to demonstrate the feasibility of fabricating microhypodermic needles. These microneedles, which may ...Show MoreMetadata
Abstract:
A combination of surface- and bulk-micromachining techniques is used to demonstrate the feasibility of fabricating microhypodermic needles. These microneedles, which may be built with on-board fluid pumps, have potential applications in the chemical and biomedical fields for localized chemical analysis, programmable drug-delivery systems, and very small, precise sampling of fluids. The microneedles are fabricated in 1, 3, and 6 mm lengths with fully enclosed channels formed of silicon nitride. The channels are 9 /spl mu/m in height and have one of two widths, 30 or 50 /spl mu/m. Access to the channels is provided at their shank and distal ends through 40-/spl mu/m square apertures in the overlying silicon nitride layer. The microneedles are found to be intact and undamaged following repetitive insertion into and removal from animal-muscle tissue (porterhouse steak).
Published in: Journal of Microelectromechanical Systems ( Volume: 8, Issue: 1, March 1999)
DOI: 10.1109/84.749406
References is not available for this document.
Select All
1.
L. Lin, A. P. Pisano and R. S. Muller, "Silicon processed microneedles", Dig. Transducers93 Int. Conf. Solid-State Sensors and Actuators, pp. 237-240, 1993.
2.
J. Chen and K. D. Wise, "A multichannel neural probe for selective chemical delivery at the cellular level", Tech. Dig. IEEE Solid-State Sensor and Actuator Workshop, pp. 256-259, June 1994.
3.
N. H. Talbot and A. P. Pisano, "Polymolding: Two wafer polysilicon micromolding of closed-flow passages for microneedles and microfluidic devices", Tech. Dig. Solid-State Sensor and Actuator Workshop, pp. 265-268, June 1998.
4.
K. Najafi, K. D. Wise and T. Mochizuki, "A high-yield IC-compatible multichannel recording array", IEEE Trans. Electron Devices, vol. ED-32, pp. 1206-1211, 1985.
5.
L. Lin and A. P. Pisano, IC-processed microneedles, 1997.
6.
L. Lin and A. P. Pisano, "Thermal bubble powered microactuators", Microsyst. Technol., vol. 1, pp. 51-58, 1994.
7.
L. Lin, "Microscale thermal bubble formation: Thermophysical phenomena and applications", Microscale Thermophys. Eng., vol. 2, pp. 71-85, 1998.
8.
L. Lin, K. S. Udell and A. P. Pisano, "Liquid-vapor phase transition and bubble formation in micro structures", Thermal Sci. Eng., vol. 2, pp. 52-59, 1994.
9.
T. K Jr. and C.-J. Kim, "Microscale pumping with traversing bubbles in microchannels", Solid-State Sensors and Actuators Workshop, pp. 144-147, 1996.
10.
R. M. Moroney, R. M. White and R. T. Howe, "Microtransport induced by ultrasonic lamb waves", Appl. Phys. Lett., vol. 59, pp. 774-776, 1991.
11.
M. Esashi, "Integrated micro flow control systems", Sensors and Actuators, vol. 21A, pp. 161-167, 1990.
12.
S. Shoji, S. Nakagawa and M. Esashi, "Micropump and sample-injector for integrated chemical analyzing systems", Sensors and Actuators, vol. 21A, pp. 189-192, 1990.
13.
H. T. G. Van Lintel, F. C. M. Van Deptol and S. Bouwstra, "A piezoelectric micropump based on micromachining of silicon", Sensors and Actuators, vol. 15, pp. 153-167, 1988.
14.
S. F. Bart, L. S. Tavrow, M. Mehregany and J. H. Lang, "Microfabricated electrohydrodynamic pumps", Sensors and Actuators A-Physical, vol. 21, pp. 193-197, 1990.
15.
A. Richter, A. Plettner, K. A. Hofmann and H. Sandmaier, "A micromachined electrohydrodynamic (edh) pump", Sensors and Actuators, vol. 29A, pp. 159-168, 1991.
16.
C. H. Mastrangelo, J. H. Yeh and R. S. Muller, "Electrical and optical characteristics of vacuum-sealed polysilicon microlamps", IEEE Transactions on Electron Devices, vol. ED-39, pp. 1363-1375, 1992.
17.
L. Lin, K. M. McNair, R. T. Howe and A. P. Pisano, "Vacuum encapsulated lateral microresonators", Dig. Transducers93 Int. Conf. Solid-State Sensors and Actuators, pp. 270-273, 1993.
18.
B. Bassous, "Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon", IEEE Trans. Electron Devices, vol. ED-25, pp. 1178-1185, 1978.
19.
C. J. Kim, A. P. Pisano and R. S. Muller, "Silicon-processed overhanging microgripper", J. Microelectromech. Syst., vol. 1, pp. 31-36, 1992.
20.
K. Takahashi and T. Matsuo, "Integration of multi-microelectrode and interface circuits by silicon planar and three-dimensional fabrication technology", Sensors and Actuators, vol. 5, pp. 89-99, 1984.
22.
L. Lin, K. S. Udell and A. P. Pisano, "Vapor bubble formation on a micro heater in confined and unconfined micro channels", Proc. ASME 29th Nat. Heat Transfer Conf., vol. HTD, no. 253, pp. 85-94, 1993.
23.
K. Najafi and J. F. Hetke, "Strength characterization of silicon microprobes in neurophysiological tissues", IEEE Trans. Biomed. Eng., vol. 37, pp. 474-481, 1990.