Abstract:
We propose the use of deep convolutional neural networks to estimate the transient attributes of a scene from a single image. Transient scene attributes describe both the...Show MoreMetadata
Abstract:
We propose the use of deep convolutional neural networks to estimate the transient attributes of a scene from a single image. Transient scene attributes describe both the objective conditions, such as the weather, time of day, and the season, and subjective properties of a scene, such as whether or not the scene seems busy. Recently, convolutional neural networks have been used to achieve state-of-the-art results for many vision problems, from object detection to scene classification, but have not previously been used for estimating transient attributes. We compare several methods for adapting an existing network architecture and present state-of-the-art results on two benchmark datasets. Our method is more accurate and significantly faster than previous methods, enabling real-world applications.
Date of Conference: 07-10 March 2016
Date Added to IEEE Xplore: 26 May 2016
ISBN Information:
Department of Computer Science, University of Kentucky
Department of Computer Science, University of Kentucky
Department of Computer Science, University of Kentucky
Department of Computer Science, University of Kentucky
Department of Computer Science, University of Kentucky
Department of Computer Science, University of Kentucky
Department of Computer Science, University of Kentucky
Department of Computer Science, University of Kentucky
Department of Computer Science, University of Kentucky
Department of Computer Science, University of Kentucky