Loading [MathJax]/extensions/MathMenu.js
Geospatial Modeling Using Dempster–Shafer Theory | IEEE Journals & Magazine | IEEE Xplore

Geospatial Modeling Using Dempster–Shafer Theory


Abstract:

Uncertainty in spatial geometrical issues is represented using Dempster-Shafer (D-S) theory. Interval approaches are used for D-S uncertainty of spatial locations and the...Show More

Abstract:

Uncertainty in spatial geometrical issues is represented using Dempster-Shafer (D-S) theory. Interval approaches are used for D-S uncertainty of spatial locations and the associated arithmetic operations on such intervals described. Categories of uncertainty for points and lines are defined using interval formulations. Based on these, approaches for calculation of geometric areas, line length and line slopes are given. Compatibility of imprecise point locations is discussed and potential aggregations for similar points considered. Finally, topological spatial relationships are described for objects with uncertain boundaries. This will provide a formal framework for the use of a D-S interval approach for uncertainty in spatial geometric issues.
Published in: IEEE Transactions on Cybernetics ( Volume: 47, Issue: 6, June 2017)
Page(s): 1551 - 1561
Date of Publication: 27 April 2016

ISSN Information:

PubMed ID: 28113569

Funding Agency:

References is not available for this document.

I. Introduction

Representation of uncertainty in geospatial data can be viewed in context of the most important use of such spatial data in geographic information systems (GISs). GIS are employed extensively throughout governmental and industrial organizations for planning and decision making [16]. Typically underlying a GIS is a spatial database in which many of the imprecision representation issues arise [27], [30]. Computation of geometric quantities from uncertain spatial data can be applied to many of the applications for which a GIS is appropriate.

Select All
1.
E. Auer, W. Luther, G. Rebner and P. Limbourg, "A verified MATLAB toolbox for the Dempster–Shafer theory", Proc. Eur. Conf. Safety Rel., pp. 125-130, 2005.
2.
T. Beaubouef, F. Petry and J. Breckenridge, "Rough set based uncertainty management for spatial databases and geographical information systems" in Soft Computing in Industrial Applications, London, U.K.:Springer-Verlag, pp. 471-479, 2000.
3.
A. G. Brown, A. Smith and O. Elmhurst, "The combined use of pollen and soil analyses in a search and subsequent murder investigation", J. Forensic Sci., vol. 47, no. 3, pp. 614-618, 2002.
4.
Geographic Objects With Indeterminate Boundaries, London, U.K.:Taylor and Francis, vol. 2, 1996.
5.
S. Canning, "‘BELIEF’ in the past: Dempster–Shafer theory GIS and archaeological predictive modeling", Aust. Archaeol., vol. 60, no. 1, pp. 6-15, 2005.
6.
E. Clementini and P. Di Felice, "A model for representing topological relationships between complex geometric features in spatial databases", Inf. Sci., vol. 90, no. 1, pp. 121-136, Apr. 1996.
7.
E. Clementini and P. Di Felice, "A spatial model for complex objects with a broad boundary supporting queries on uncertain data", Data Knowl. Eng., vol. 37, no. 3, pp. 285-305, 2001.
8.
E. Clementini, P. Di Felice and D. Hernández, "Qualitative representation of positional information", Artif. Intell., vol. 95, no. 2, pp. 317-356, 1997.
9.
H. Couclelis, "The certainty of uncertainty: GIS and the limits of geographic knowledge", Trans. GIS, vol. 7, no. 2, pp. 165-175, 2003.
10.
M. J. Egenhofer and R. D. Franzosa, "Point-set topological spatial relations", Int. J. Geograph. Inf. Syst., vol. 5, no. 2, pp. 161-174, 1991.
11.
A. Heneen, MH370 Initial Search Southeast Asia, 2014, [online] Available: http://commons.wikimedia.org/wiki/File.
12.
E. Ioup et al., "Annotating uncertainty in geospatial and environmental data", IEEE Internet Comput., vol. 19, no. 1, pp. 18-27, Jan./Feb. 2015.
13.
R. Kearfott and V. Kreinovich, "Applications of interval computations: An introduction" in Applications of Interval Computations, Dordrecht, The Netherlands:Kluwer, pp. 1-22, 1996.
14.
E. S. Lee and Q. Zhu, "An interval Dempster–Shafer approach", Comput. Math. Appl., vol. 24, no. 7, pp. 89-95, 1992.
15.
Z. G. Liu, Q. Pan, G. Mercier and J. Dezert, "A new incomplete pattern classification method based on evidential reasoning", IEEE Trans. Cybern., vol. 45, no. 4, pp. 635-646, Apr. 2015.
16.
P. Longley, M. F. Goodchild, D. J. Maguire and D. Rhind, Geographic Information Systems and Science, Chichester, U.K.:Wiley, 2010.
17.
E. Lorup, Belief Modeling With Arcview GIS, 1999, [online] Available: http://proceedings.esri.com/library/userconf/proc99/proceed/papers/pap295/p295.htm.
18.
J. A. Malpica, M. C. Alonso and M. A. Sanz, "Dempster–Shafer theory in geographic information systems: A survey", Expert Syst. Appl., vol. 32, no. 1, pp. 47-55, 2007.
19.
R. Moore, Interval Analysis, Englewood Cliffs, NJ, USA:Prentice-Hall, 1996.
20.
R. Moore, B. Kearfott and M. Cloud, Introduction to Interval Analysis, Philadelphia, PA, USA:SIAM, 2009.
21.
B. Mora, M. A. Wulder and J. C. White, "An approach using Dempster–Shafer theory to fuse spatial data and satellite image derived crown metrics for estimation of forest stand leading species", Inf. Fusion, vol. 14, no. 4, pp. 384-395, 2013.
22.
A. Morris and F. E. Petry, "UGML: An extension of GML to provide support for geographic objects with uncertain boundaries", Proc. 7th Int. Symp. Spat. Accuracy Assess. Nat. Resour. Environ. Sci., pp. 794-801, 2006.
23.
Fuzzy Modeling With Spatial Information for Geographic Problems, Berlin, Germany:Springer-Verlag, 2005.
24.
F. Pichon, S. Destercke and T. Burger, "A consistency-specificity trade-off to select source behavior in information fusion", IEEE Trans. Cybern., vol. 45, no. 4, pp. 598-609, Apr. 2015.
25.
K. Pye, Geological and Soil Evidence: Forensic Applications, Boca Raton, FL, USA:CRC Press, 2007.
26.
G. L. Raines, D. L. Sawatsky and G. F. Bonham-Carter, "Incorporating expert knowledge: New fuzzy logic tools in ArcGIS 10", ArcUser Online—Spring 2010, pp. 8-13, 2010.
27.
P. Rigaux, M. O. Scholl and A. Voisard, Spatial Databases With Application to GIS, San Francisco, CA, USA:Morgan Kaufmann, 2002.
28.
V. B. Robinson, "A perspective on the fundamentals of fuzzy sets and their use in geographic information systems", Trans. GIS, vol. 7, no. 1, pp. 3-30, 2003.
29.
G. Shafer, A Mathematical Theory of Evidence, Princeton, NJ, USA:Princeton Univ. Press, 1976.
30.
S. Shekar and S. Chawla, Spatial Databases: A Tour, Upper Saddle River, NJ, USA:Prentice Hall, 2003.
Contact IEEE to Subscribe

References

References is not available for this document.