Abstract:
No correlation was observed between single-event gate rupture (SEGR) and precursor damage by heavy-ion irradiation for 7-nm thermal and nitrided oxides. Precursor ion dam...Show MoreMetadata
Abstract:
No correlation was observed between single-event gate rupture (SEGR) and precursor damage by heavy-ion irradiation for 7-nm thermal and nitrided oxides. Precursor ion damage at biases below SEGR threshold for fluence variations over three orders of magnitude had no significant effect on SEGR thresholds. These data support a true single ion model for SEGR. A physical model based on the concept of a conducting pipe is developed that explains the empirical equation for the linear dependence of inverse critical field to rupture with LET. This model also explains the dependence of critical voltage on angle of incidence. As the oxide thickness approaches the diameter of the conducting pipe, the angular dependence of the critical voltage disappears. A model fit to the data suggests a central core diameter of 6 and 8 nm for conducting pipes induced in MOS oxides by Br and Au ions, respectively. The buildup of precursor ion damage in the oxides depends on ion species and bias during irradiation, but is not consistent with the accumulation of total ionizing dose damage. Some 5-nm oxides exhibited the characteristic high leakage current of SEGR; however, most 5-nm devices showed only soft breakdown during heavy ion exposure with electric fields up to 12 MV/cm.
Published in: IEEE Transactions on Nuclear Science ( Volume: 45, Issue: 6, December 1998)
DOI: 10.1109/23.736492
References is not available for this document.
Select All
1.
A. H. Johnston, C. I. Lee, B. G. Rax and D. C. Shaw, "Using Commercial Semiconductor Technologies in Space", Proceedings of the Third RADECS Conference, pp. 175-182, 1995.
2.
G. M. Swift and R. Katz, "An Experimental Survey of Heavy Ion Induced Dielectric Rupture in Actel Field Programmable Gate Arrays (FPGAs)", IEEE Trans. Nucl. Sci., vol. 43, pp. 967-972, 1996.
3.
F. W. Sexton, D. M. Fleetwood, M. R. Shaneyfelt, P. E. Dodd and G. L. Hash, "Single Event Gate Rupture in Thin Gate Oxides", IEEE Trans Nucl. Sci., vol. 44, pp. 2345-2352, 1997.
4.
T. F. Wrobel, "On Heavy Ion Induced Hard-Errors in Dielectric Structures", IEEE Trans Nucl. Sci., vol. 34, pp. 1262-1268, 1987.
5.
J. L. Titus and C. F. Wheatley, "Experimental Studies of Single-Event Gate Rupture and Burnout in Vertical Power MOSFETs", IEEE Trans. Nucl. Sci., vol. 43, pp. 533-545, 1996.
6.
C. F. Wheatley, J. L. Titus and D. I. Burton, "Single-Event Gate Rupture in Vertical Power MOSFETs: An Original Empirical Expression", IEEE Trans. Nucl. Sci., vol. 41, pp. 2152-2159, 1994.
7.
D. J. DiMaria, E. Cartier and D. A. Buchanan, "Anode Hole Injection and Trapping in Silicon Dioxide", J. Appl. Phys., vol. 80, no. 1, pp. 304-317, 1996.
8.
I. Mouret, P. Calvel, M. Allenspach, J. L. Titus, C. F. Wheatley, K. A. LaBel, et al., "Measurement of a Cross Section for Single-Event Gate Rupture in Power MOSFETs", IEEE Electron Dev. Lett., vol. 17, no. 4, pp. 163-165, 1995.
9.
G. H. Johnson, K. F. Galloway, R. D. Schrimpf, J. L. Titus, C. F. Wheatley, M. Allenspach, et al., "A Physical Interpretation for the Single-Event Gate Rupture Corss-Section of N-Channel Power MOSFETs", IEEE Trans Nucl. Sci., vol. 43, no. 6, pp. 2932-2937, 1996.
10.
A. H. Johnston, "Radiation Effects in Advanced Microelectronic Technologies", IEEE Trans Nucl. Sci., vol. 45, pp. 1339-1354, 1998.
11.
D.M. Fleetwood and N.S. Saks, "Oxide Interface and Border Traps in Thermal N2O and N2O-Nitrided Oxides", J. Appl. Phys., vol. 79, pp. 1583-1594, 1996.
12.
M. Y. Hao, W. M. Chen, K. Lai, J. C. Lee, M. Gardner and J. Fulford, "Correlation of Dielectric Breakdown with Hole Transport for Ultrathin Thermal Oxides and N2O Oxynitrides", Appl. Phys. Lett., vol. 66, pp. 1126-1128, 1995.
13.
K. S. Krisch, L. Manchanda, F. H. Baumann, M. L. Green, D. Grasen, L. C. Feldman, et al., "Impact of Boron Diffusion Through O2 and N2O Gate Dielectrics on the Process Margin of Dual-Poly Low Power CMOS", IEDM Technical Digest, pp. 325-328, 1994.
14.
B.E. Weir, P.J. Silverman, D. Monroe, K.S. Krisch, M.A. Alam, G.B. Alers, et al., "Ultra-Thin Gate Dielectrics: They Break Down But Do They Fail?", IEEE IEDM Technical Digest, pp. 73-76, 1997.
15.
C. F. Wheatley, J. L. Titus, D. I. Burton and D. R. Carley, "SEGR Response of a Radiation Hardened Power MOSFET Technology", IEEE Trans Nucl. Sci., vol. 43, pp. 2944-2951, 1996.
16.
S. R. Anderson, R. D. Schrimpf, K. F. Galloway and J. L. Titus, "Exploration of Heavy Ion Irradiation Effects on Gate Oxide Reliability in Power MOSFETS", Microelectron. Reliab., vol. 35, no. 3, pp. 603-608, 1995.
17.
J. L. Titus, J. F. Krieg, C. F. Wheatley, K. M. van Tyne and D. I. Burton, "Effects of Ion Energy Upon the Dielectric Breakdown Failure Mechanism in Vertical Power MOSFETS", accepted for publication in IEEE Trans Nucl. Sci., vol. 45, no. 6, 1998.
18.
S. M. Sze, Physics of Semiconductor Devices, New York, pp. 402, 1981.
19.
A. Scarpa, A. Paccagnella, F. Montera, G. Ghibaudo, G. Pananakakis, G. Ghidini, et al., "Ionizing Radiation Induced Leakage Current on Ultra-Thin Gate Oxides", IEEE Trans. Nucl. Sci., vol. 44, pp. 1818-1825, 1997.
20.
J. R. Srour, S. C. Chen, S. Othmer and R. A. Hartman, "Radiation Damage Coefficients for Silicon Depleted Regions", IEEE Trans. Nucl. Sci., vol. 26, pp. 4784-4791, 1979.