Abstract:
Yttrium aluminum garnet (YAG) has thermal and mechanical properties that vary strongly with temperature. In the paper, we extend previously reported rod amplifier nonline...Show MoreMetadata
Abstract:
Yttrium aluminum garnet (YAG) has thermal and mechanical properties that vary strongly with temperature. In the paper, we extend previously reported rod amplifier nonlinear average power scaling relationships to slab amplifiers. As found previously with rod amplifiers, we show that, at room temperature and below, temperature profiles obtained are nonquadratic and that the magnitude of the stresses are seriously underestimated if variations in YAG properties with temperature are ignored. Our results are applied to Nd:YAG and Yb:YAG lasers operating with coolant temperatures at room temperature and 77 K. As found previously with rod lasers, significant increases in average power can be obtained by operating Nd:YAG and Yb:YAG lasers at 77 K. In addition, we compare the nonlinear average power scaling behavior of rod and slab amplifiers using both linear and nonlinear approaches.
Published in: IEEE Journal of Quantum Electronics ( Volume: 34, Issue: 12, December 1998)
DOI: 10.1109/3.736114
References is not available for this document.
Select All
1.
J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer and R. L. Byer, "The slab geometry laser-Part I: Theory", IEEE J. Quantum Electron., vol. QE-20, pp. 289-300, 1984.
2.
"Methods for scaling high average power laser performance", High-Power and Solid-State Lasers, vol. 622, pp. 30-41, 1986.
3.
D. C. Brown, "Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers", IEEE J. Quantum Electron., vol. 33, pp. 861-873, 1997.
4.
D. C. Brown and R. Nelson, Ultra-high-average-power diode-pumped Nd:YAG and Yb:YAG lasers, Feb. 1998.
5.
D. C. Brown, "Nonlinear thermal distortion in YAG rod and slab amplifiers", IEEE Journal of Quantum Electronics, vol. 34, no. 12, pp. 2383-2392, December 1998.
6.
H. W. Bruesselbach, D. S. Sumida, R. A. Reeder and R. W. Byron, "Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers", IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 105-116, 1997.
7.
D. S. Sumida and T. Y. Fan, "Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media", Opt. Lett., vol. 19, pp. 1343-1345, 1994.
8.
D. C. Brown, "Heat fluorescence and stimulated-emission power densities and fractions in Nd:YAG", IEEE J. Quantum Electron., vol. 34, pp. 560-572, 1998.
9.
T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG", IEEE J. Quantum Electron., vol. 29, pp. 1457-1459, 1993.
10.
S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 1987.
11.
J. Marion, "Appropriate use of the strength parameter in solid-state slab laser design", J. Appl. Phys., vol. 62, pp. 1595-1604, 1987.
12.
W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird and S. E. Stokowski, "Spectroscopic optical and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet", J. Opt. Soc. Amer. B, vol. 3, pp. 102-113, 1986.
13.
T. Y. Fan and J. L. Daneu, "Thermal coefficients of the optical path length and refractive index in YAG", Appl. Opt., vol. 37, pp. 1635-1637, 1998.
14.
R. S. Krishnan, R. Srinivasan and S. Devanarayanan, Thermal Expansion of Crystals, 1979.