Abstract:
The periodic Riccati difference equation (PRDE) for the optimal filtering problem of linear periodic discrete-time systems is addressed. Specifically, the author provides...Show MoreMetadata
Abstract:
The periodic Riccati difference equation (PRDE) for the optimal filtering problem of linear periodic discrete-time systems is addressed. Specifically, the author provides a number of results on the existence, uniqueness, and stability properties of symmetric periodic nonnegative-definite solutions of the periodic Riccati difference equation in the case of nonreversible and nonstabilizable periodic systems. The convergence of symmetric periodic nonnegative-definite solutions of the periodic Riccati difference equation is also analyzed. The results have been established under weaker assumptions and include both necessary and sufficient conditions. The existence and properties of symmetric periodic nonnegative-definite solutions of the PRDE are established directly from the PRDE.<>
Published in: IEEE Transactions on Automatic Control ( Volume: 36, Issue: 3, March 1991)
DOI: 10.1109/9.73566
References is not available for this document.
Select All
1.
T. Nishimura and H. Kano, "Algebraic solution of Riccati equations in discrete periodically time-varying systems with detectability and stabilizability", Trans. SICE, vol. 14, pp. 486-493, 1978.
2.
S. Bittanti, P. Colaneri and G. De Nicolao, "Analysisof the discrete-time periodic Riccati equation by a Kleinman procedure", Proc. 25th IEEE Conf. Decision Contr., pp. 1444-1449, 1986.
3.
P. Bolzern and P. Colaneri, "Inertia theorems for the periodic Lyapunov difference equation and the periodic Riccati difference equation", Linear Algebra Appl., vol. 85, pp. 249-265, 1987.
4.
S. Bittanti, P. Colaneri and G. De Nicolao, "The difference periodic Riccati equation for the periodic prediction problem", IEEE Trans. Automat. Contr., vol. 33, pp. 706-712, 1988.
5.
C. E. de Souza, "On periodic solutions of Riccati differential equation in optimal filtering of periodic nonstabilizable systems", Proc. 18th JAACE Symp. Stochastic Syst. Theory Appl., pp. 87-90, 1986.
6.
C. E. de Souza, "Riccati differential equation in optimal filtering of periodic nonstabilizable systems", Int. J. Contr., vol. 46, pp. 1235-1250, 1987.
7.
C. E. de Souza, M. R. Gevers and G. C. Goodwin, "Riccati equations in optimal filtering of nonstabilizable systems having singular state transition matrices", IEEE Trans. Automat. Contr., vol. AC-31, pp. 831-838, 1986.
8.
C. E. de Souza and G. C. Goodwin, "Periodic solutions of matrix Riccati equation in optimal filtering of nonstabilizable periodic systems", Proc. 10th IFAC World Cong., vol. 9, pp. 249-254, 1987.
9.
C. E. de Souza, "Existence conditions and properties for the maximal periodic solution of periodic Riccati difference equations", Int. J. Contr., vol. 50, pp. 731-742, 1989.
10.
S. Bittanti and P. Bolzern, "Stabilizability and detectability of linear periodic systems", Syst. Contr. Lett., vol. 6, pp. 141-145, 1985.
11.
P. Bolzern, "Criteria for reachability controllability and stabilizability of discrete-time linear periodic systems", Proc. 5th Polis-English Seminar Real-Time Process Contr., pp. 69-83, 1986.
12.
S. Bittanti and P. Bolzern, "Discrete-time linear periodic systems: Gramian and modal criteria for reachability and controllability", Int. J. Contr., vol. 41, pp. 909-928, 1985.
13.
O. M. Grasselli, "A canonical decomposition of linear periodic discrete-time systems", Int. J. Contr., vol. 40, pp. 201-214, 1984.
14.
P. Bolzern and P. Colaneri, "Existence and uniqueness conditions for the periodic solutions of the discrete-time periodic Lyapunov equation", Proc. 25th IEEE Conf. Decision Contr., pp. 1439-1443, 1986.
15.
P. Bolzern and P. Colaneri, "The periodic Lyapunov equation", SIAM J. Matrix Anal. Appl., vol. 9, pp. 499-512, 1988.
16.
O. M. Grasselli and S. Longhi, "Zero and poles of linear periodic multivariable discrete-time systems", Circuits Syst. Signal Processing, vol. 7, pp. 361-380, 1988.
17.
D. J. Clements, Strong solutions of symmetric algebraic Riccati equations, Australia, New South Wales:School Elec. Eng. Comput. Sci., Univ. Newcastle, 1987.
18.
C. E. de Souza, "On stabilizing properties of solutions of the Riccati difference equation", IEEE Trans. Automat. Contr., vol. 35, pp. 1313-1316, 1990.