Electrical Impedance Tomography for Artificial Sensitive Robotic Skin: A Review | IEEE Journals & Magazine | IEEE Xplore

Electrical Impedance Tomography for Artificial Sensitive Robotic Skin: A Review


Abstract:

Electrical impedance tomography (EIT) is a nondestructive imaging technique used to estimate the internal conductivity distribution of a conductive domain by taking poten...Show More

Abstract:

Electrical impedance tomography (EIT) is a nondestructive imaging technique used to estimate the internal conductivity distribution of a conductive domain by taking potential measurements only at the domain boundaries. If a thin electrically conductive material that responds to pressure with local changes in conductivity is used as a conductive domain, then EIT can be used to create a large-scale pressure-sensitive artificial skin for robotics applications. This paper presents a review of EIT and its application as a robotics sensitive skin, including EIT excitation and image reconstruction techniques, materials, and skin fabrication techniques. Touch interpretation via EIT-based artificial skins is also reviewed.
Published in: IEEE Sensors Journal ( Volume: 15, Issue: 4, April 2015)
Page(s): 2001 - 2016
Date of Publication: 02 December 2014

ISSN Information:

References is not available for this document.

I. Introduction

Over the last decade the field of robotics has seen a significant increase in human-robot interaction (HRI) research [1]. As robots begin to be deployed outside engineered factory environments and the distance between humans and robots narrows, there is an increasing need for robots to have capabilities that will allow them to interact fluently and intuitively with humans [2]. Although significant progress has been made in the area of audio-visual communication [3], until recently the field of touch has been significantly neglected.

Select All
1.
M. A. Goodrich and A. C. Schultz, "Human-robot interaction: A survey", Found. Trends Human-Comput. Interact., vol. 1, no. 3, pp. 203-275, 2007.
2.
C. Harper and G. Virk, "Towards the development of international safety standards for human robot interaction", Int. J. Soc. Robot., vol. 2, no. 3, pp. 229-234, 2010.
3.
Z. Zeng, M. Pantic, G. Roisman and T. Huang, "A survey of affect recognition methods: Audio visual and spontaneous expressions", IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1, pp. 39-58, Jan. 2009.
4.
V. J. Lumelsky, M. S. Shur and S. Wagner, "Sensitive skin", IEEE Sensors J., vol. 1, no. 1, pp. 41-51, Jun. 2001.
5.
J.-H. Kim, J.-I. Lee, H.-J. Lee, Y.-K. Park, M.-S. Kim and D.-I. Kang, "Design of flexible tactile sensor based on three-component force and its fabrication", Proc. IEEE Int. Conf. Robot. Autom., pp. 2578-2581, Apr. 2005.
6.
K. Kim et al., "A silicon-based flexible tactile sensor for ubiquitous robot companion applications", J. Phys. Conf. Ser., vol. 34, no. 1, pp. 399-403, 2006.
7.
R. S. Dahiya, P. Mittendorfer, M. Valle, G. Cheng and V. J. Lumelsky, "Directions toward effective utilization of tactile skin: A review", IEEE Sensors J., vol. 13, no. 11, pp. 4121-4138, Nov. 2013, [online] Available: http://dx.doi.org/10.1109/JSEN.2013.2279056.
8.
R. S. Dahiya, G. Metta, M. Valle and G. Sandini, "Tactile sensing—From humans to humanoids", IEEE Trans. Robot., vol. 26, no. 1, pp. 1-20, Feb. 2010.
9.
D. Silvera-Tawil, D. C. Rye and M. Velonaki, "Artificial skin and tactile sensing for socially interactive robots: A review", Robot. Auto. Syst., vol. 63, no. 3, pp. 230-243, 2015.
10.
P. Mittendorfer and G. Cheng, "Humanoid multimodal tactile-sensing modules", IEEE Trans. Robot., vol. 27, no. 3, pp. 401-410, Jun. 2011.
11.
S. Lederman, "Skin and touch" in Encyclopedia of Human Biology, New York, NY, USA:Academic, vol. 7, pp. 51-63, 1991.
12.
E. Weber, On the Tactile Senses, New York, NY, USA:Academic, 1978.
13.
M. L. Hammock, A. Chortos, B. C.-K. Tee, J. B.-H. Tok and Z. Bao, "25th anniversary article: The evolution of electronic skin (e-skin): A brief history design considerations and recent progress", Adv. Mater., vol. 25, no. 42, pp. 5997-6038, 2013.
14.
W. Lionheart, N. Polydorides and A. Borsic, "The reconstruction problem" in Electrical Impedance Tomography: Methods History and Applications, London, U.K.:Inst. Physics Pub, pp. 3-64, 2005.
15.
Y. Kato, T. Mukai, T. Hayakawa and T. Shibata, "Tactile sensor without wire and sensing element in the tactile region based on EIT method", Proc. IEEE Sensors, pp. 792-795, Oct. 2007.
16.
A. Nagakubo, H. Alirezaei and Y. Kuniyoshi, "A deformable and deformation sensitive tactile distribution sensor", Proc. IEEE Int. Conf. Robot. Biomimetics, pp. 1301-1308, Dec. 2007.
17.
D. S. Tawil, D. Rye and M. Velonaki, "Improved image reconstruction for an EIT-based sensitive skin with multiple internal electrodes", IEEE Trans. Robot., vol. 27, no. 3, pp. 425-435, Jun. 2011.
18.
R. Lazzarini, R. Magni and P. Dario, "A tactile array sensor layered in an artificial skin", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 3, pp. 114-119, Aug. 1995.
19.
T. V. Papakostas, J. Lima and M. Lowe, "A large area force sensor for smart skin applications", Proc. IEEE Sensors, vol. 2, pp. 1620-1624, Jun. 2002.
20.
W. D. Stiehl and C. Breazeal, "A sensitive skin for robotic companions featuring temperature force and electric field sensors", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 1952-1959, Oct. 2006.
21.
T. Someya, T. Sakurai and T. Sekitani, "Large-area electronics based on organic transistors", Proc. 64th IEEE Device Res. Conf., pp. 209-210, Jun. 2006.
22.
W. D. Stiehl and C. Breazeal, "Applying a ‘somatic alphabet’ approach to inferring orientation motion and direction in clusters of force sensing resistors", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 3, pp. 3015-3020, Sep./Oct. 2004.
23.
T. Lomas, A. Tuantranont and A. Wisitsoraat, "Polysilicon piezoresistive tactile sensor array fabricated by polyMUMPs process", Proc. 5th IEEE Conf. Sensors, pp. 1313-1316, Oct. 2006.
24.
T. Mukai, M. Onishi, T. Odashima, S. Hirano and Z. Luo, "Development of the tactile sensor system of a human-interactive robot ‘RI-MAN", IEEE Trans. Robot., vol. 24, no. 2, pp. 505-512, Apr. 2008.
25.
J. Meyer, P. Lukowicz and G. Tröster, "Textile pressure sensor for muscle activity and motion detection", Proc. IEEE Int. Symp. Wearable Comput., pp. 69-72, Oct. 2006.
26.
G. Cannata, M. Maggiali, G. Metta and G. Sandini, "An embedded artificial skin for humanoid robots", Proc. IEEE Int. Conf. Multisensor Fusion Integr. Intell. Syst., pp. 434-438, Aug. 2008.
27.
A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata and G. Metta, "Methods and technologies for the implementation of large-scale robot tactile sensors", IEEE Trans. Robot., vol. 27, no. 3, pp. 389-400, Jun. 2011.
28.
Y. Hasegawa, H. Sasaki, M. Shikida, K. Sato and K. Itoigawa, "Magnetic actuation of a micro-diaphragm structure for an active tactile sensor", Proc. IEEE Int. Symp. Micro-Nanomechatron. Human Sci. Symp. Micro-Nanomechatron. Inf.-Based Soc., pp. 99-104, Oct./Nov. 2004.
29.
M. Goka, H. Nakamoto and S. Takenawa, "A magnetic type tactile sensor by GMR elements and inductors", Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 885-890, Oct. 2010.
30.
R. R. Reston and E. S. Kolesar, "Pressure-sensitive field-effect transistor sensor array fabricated from a piezoelectric polyvinylidene fluoride film", Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., vol. 3, pp. 918-919, Nov. 1989.
Contact IEEE to Subscribe

References

References is not available for this document.