Loading [MathJax]/extensions/TeX/boldsymbol.js
Towards a 1 V Josephson Arbitrary Waveform Synthesizer | IEEE Journals & Magazine | IEEE Xplore

Towards a 1 V Josephson Arbitrary Waveform Synthesizer


Abstract:

The establishment at PTB of an AC Josephson voltage standard (Josephson Arbitrary Waveform Synthesizer- JAWS) based on pulse-driven Josephson arrays is focused on achievi...Show More

Abstract:

The establishment at PTB of an AC Josephson voltage standard (Josephson Arbitrary Waveform Synthesizer- JAWS) based on pulse-driven Josephson arrays is focused on achieving an output voltage of at least 1 Vrms which is required for many metrology applications. In this paper, we approached this goal by increasing the number of active junctions in two ways. Firstly, we fabricated arrays containing triple-stacked SNS-type Josephson junctions with NbxSi1-x as barrier material. We obtained current operation margins of about 0.2 mA with arrays of up to 9000 Josephson junctions at an rms voltage of 355 mV. Secondly, we used a new 8-channel ternary pulse pattern generator (PPG) to bias up to 8 arrays connected in series. An output voltage of VRMS = 1006 mV(VPP = 2.845 V) was achieved by using 8 arrays (arranged on 4 separate chips) with 63000 junctions in total. Higher harmonics are suppressed by at least -116 dBc. The fabrication process and the experimental setup will be described, as well as experimental results that are leading towards our 1 V goal.
Published in: IEEE Transactions on Applied Superconductivity ( Volume: 25, Issue: 3, June 2015)
Article Sequence Number: 1400305
Date of Publication: 03 November 2014

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

AFTER many years since the first realization of a pulse-driven AC Josephson voltage standard [1], recent developments in AC voltage standards for metrological applications show that the use of pulse-driven Josephson junction series arrays is a very promising approach. This AC Josephson voltage standard is often called “Josephson Arbitrary Waveform Synthesizer” (JAWS) [2] and it is already used in several NMI's for metrology applications [3]– [7]. For the application in JAWS the junctions are operated by short current pulses which affect the transfer of flux quanta across the Josephson junctions. According to the Josephson equation, a time-dependent voltage, which is quantized at all times, is generated at the junction series array output leads: V(t)=n\cdot m\cdot{\mmb \Phi}_{0}\cdot f_{p}(t).\eqno{\hbox{(1)}}

Select All
1.
S. P. Benz and C. A. Hamilton, "A pulse-driven programmable Josephson voltage standard", Appl. Phys. Lett., vol. 68, no. 22, pp. 3171-3173, May 1996.
2.
S. P. Benz, C. J. Burroughs and P. D. Dresselhaus, "Low harmonic distortion in a Josephson arbitrary waveform synthesizer", Appl. Phys. Lett., vol. 77, no. 7, pp. 1014-1016, Aug. 2000.
3.
M. Merimaa, K. Nyholm, M. Vainio and A. Lassil, "An ac Josephson voltage standard for AC–DC transfer standard measurements", IEEE Trans. Instrum. Meas., vol. 56, no. 2, pp. 239-243, Apr. 2007.
4.
T. E. Lipe et al., "Thermal voltage converter calibrations using a quantum AC standard", Metrologia, vol. 45, no. 3, pp. 275-280, May 2008.
5.
E. Houtzager, S. P. Benz and H. E. van den Brom, "Operating margins for a pulse-driven Josephson arbitrary waveform synthesizer using a ternary bit-streamgenerator", IEEE Trans. Instrum. Meas., vol. 58, no. 4, pp. 775-780, Apr. 2009.
6.
D. Schleussner, O. F. Kieler, R. Behr, J. Kohlmann and T. Funck, "Investigations using an improved Josephson Arbitrary Waveform Synthesizer (JAWS)system", Proc. CPEM, pp. 177-178, Jun. 2010.
7.
P. S. Filipski, H. E. van den Brom and E. Houtzager, "International comparison of quantum AC voltage standards for frequencies up to 100kHz", Measurement, vol. 45, no. 9, pp. 2218-2225, Mar. 2012.
8.
S. P. Benz, P. D. Dresselhaus, C. J. Burroughs and N. F. Bergren, "Precision measurements using a 300 mV Josephson arbitrary waveform synthesizer", IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 864-869, Jun. 2007.
9.
S. P. Benz and S. B. Waltman, "Pulse-bias electronics and techniques for a Josephson arbitrary waveformsynthesizer", IEEE Trans. Appl. Supercond., vol. 24, no. 6, Dec. 2014.
10.
S. P. Benz et al., "1 V Josephson arbitrary waveform synthesizer", IEEE Trans. Appl. Supercond., vol. 25, no. 1, Feb. 2015.
11.
P. D. Dresselhaus, M. M. Elsbury and S. P. Benz, "Tapered transmission lines with dissipative junctions", IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 981-986, Jun. 2009.
12.
N. Hadacek, P. D. Dresselhaus and S. P. Benz, " Lumped 50- Omega arrays of SNS Josephson junctions ", IEEE Trans. Appl. Supercond., vol. 16, no. 4, pp. 2005-2010, Dec. 2006.
13.
S. P. Benz et al., "Progress toward a 1 V pulse-driven AC Josephson voltage standard", IEEE Trans. Instrum. Meas., vol. 58, no. 4, pp. 838-843, Apr. 2009.
14.
O. F. Kieler et al., "SNS Josephson junction series arrays for the Josephson arbitrary waveformsynthesizer", IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 187-190, Mar. 2007.
15.
O. F. Kieler, R. Iuzzolino and J. Kohlmann, " Sub- muhbox{m} SNS Josephson junction arrays for the Josephsonarbitrary waveform synthesizer ", IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 230-233, Jun. 2009.
16.
B. Baek, P. D. Dresselhaus and S. P. Benz, "Co-sputtered amorphous NbxSi1-x barriers for Josephson-junction circuits", IEEE Trans. Appl. Supercond., vol. 16, no. 4, pp. 1966-1970, Dec. 2006.
17.
R. Behr, O. F. Kieler, J. Kohlmann, F. Mueller and L. Palafox, "Development and metrological applications of Josephson arrays at PTB", Meas. Sci. Technol., vol. 23, no. 12, Dec. 2012.
18.
J. M. Williams et al., "The simulation and measurement of the response of Josephson junctions to optoelectronically generatedshort pulses", Supercond. Sci. Technol., vol. 17, no. 6, pp. 815-818, Jun. 2004.
19.
C. Urano et al., "Operation of a Josephson arbitrary waveform synthesizer with optical data input", Supercond. Sci. Technol., vol. 22, no. 11, Oct. 2009.
20.
S. P. Benz, C. J. Burroughs and P. D. Dresselhaus, "AC coupling technique for Josephson waveform synthesis", IEEE Trans. Appl. Supercond., vol. 11, no. 1, pp. 612-616, Mar. 2001.
21.
M. Watanabe, P. D. Dresselhaus and S. P. Benz, "Resonance-free low-pass filters for the AC Josephson voltage standard", IEEE Trans. Appl. Supercond., vol. 16, no. 1, pp. 49-53, Mar. 2006.
22.
P. D. Dresselhaus, Y. Chong and S. P. Benz, "Stacked Nb-MoSi2-Nb Josephson junctions for ac voltage standards", IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 449-452, Jun. 2005.
23.
O. F. Kieler, R. Behr, D. Schleussner, L. Palafox and J. Kohlmann, "Precision comparison of sine waveforms with pulse-driven Josephson arrays", IEEE Trans. Appl. Supercond., vol. 23, no. 3, Jun. 2013.
24.
O. F. Kieler, R. Behr and J. Kohlmann, "Development of a pulse-driven AC Josephson voltage standard at PTB", Proc. ISEC, pp. 59-61, Jul. 2013.
25.
O. F. Kieler, D. Schleußner, R. Behr and J. Kohlmann, "Improved setup for pulse-driven AC Josephson voltage standards", Proc. ISEC, pp. 1-21, Jun. 2009.
26.
O. F. Kieler, T. Scheller and J. Kohlmann, "Cryocooler operation of a pulse-driven AC Josephson voltage standard at PTB", World J. Condens. Matter Phys., vol. 3, no. 4, pp. 189-193, Nov. 2013.
27.
C. J. Burroughs, S. P. Benz, P. D. Dresselhaus and Y. Chong, "Precision measurements of AC Josephson voltage standard operating margins", IEEE Trans. Instrum. Meas., vol. 54, no. 2, pp. 624-627, Apr. 2005.
28.
J. Lee et al., "An ac quantum voltmeter based on a 10 V programmable Josephson array", Metrologia, vol. 50, no. 6, pp. 612-622, Nov. 2013.
Contact IEEE to Subscribe

References

References is not available for this document.