Abstract:
Memristor-based circuit architecture for multilayer neural networks is proposed. It is a first of its kind demonstrating successful circuit-based learning for multilayer ...Show MoreMetadata
Abstract:
Memristor-based circuit architecture for multilayer neural networks is proposed. It is a first of its kind demonstrating successful circuit-based learning for multilayer neural network built with memristors. Though back-propagation algorithm is a powerful learning scheme for multilayer neural networks, its hardware implementation is very difficult due to complexities of the neural synapses and the operations involved in the learning algorithm. In this paper, the circuit of a multilayer neural network is designed with memristor bridge synapses and the learning is realized with a simple learning algorithm called Random Weight Change (RWC). Though RWC algorithm requires more iterations than back-propagation algorithm, we show that a circuit-based learning using RWC is two orders faster than its software counterpart. The method to build a multilayer neural network using memristor bridge synapses and a circuit-based learning architecture of RWC algorithm is proposed. Comparison between software-based and memristor circuit-based learning are presented via simulations.
Published in: IEEE Transactions on Circuits and Systems I: Regular Papers ( Volume: 62, Issue: 1, January 2015)