Abstract:
In this paper, we take up the long-standing problem of how to recover 3-D shapes represented by a 2-D image, such as the image on the retina of the eye, or in a video cam...Show MoreMetadata
Abstract:
In this paper, we take up the long-standing problem of how to recover 3-D shapes represented by a 2-D image, such as the image on the retina of the eye, or in a video camera. Our approach is biologically grounded in a theory of how the human visual system solves this problem, focusing on shapes that are mirror symmetrical in 3-D. A 3-D mirror-symmetrical shape can be recovered from a single 2-D orthographic or perspective image by applying several a priori constraints: 3-D mirror symmetry, 3-D compactness, and planarity of contours. From the computational point of view, the application of a 3-D symmetry constraint is challenging because it requires establishing 3-D symmetry correspondence among features of a 2-D image, which itself is asymmetrical for almost all viewing directions relative to the 3-D symmetrical shape. We describe new invariants of a 3-D to 2-D projection for the case of a pair of mirror-symmetrical planar contours, and we formally state and prove the necessary and sufficient conditions for detection of this type of symmetry in a single orthographic and perspective image.
Published in: Proceedings of the IEEE ( Volume: 102, Issue: 10, October 2014)