Loading [MathJax]/extensions/TeX/enclose.js
Asynchronous stochastic optimization for sequence training of deep neural networks | IEEE Conference Publication | IEEE Xplore

Asynchronous stochastic optimization for sequence training of deep neural networks


Abstract:

This paper explores asynchronous stochastic optimization for sequence training of deep neural networks. Sequence training requires more computation than frame-level train...Show More

Abstract:

This paper explores asynchronous stochastic optimization for sequence training of deep neural networks. Sequence training requires more computation than frame-level training using pre-computed frame data. This leads to several complications for stochastic optimization, arising from significant asynchrony in model updates under massive parallelization, and limited data shuffling due to utterance-chunked processing. We analyze the impact of these two issues on the efficiency and performance of sequence training. In particular, we suggest a framework to formalize the reasoning about the asynchrony and present experimental results on both small and large scale Voice Search tasks to validate the effectiveness and efficiency of asynchronous stochastic optimization.
Date of Conference: 04-09 May 2014
Date Added to IEEE Xplore: 14 July 2014
Electronic ISBN:978-1-4799-2893-4

ISSN Information:

Conference Location: Florence, Italy

References

References is not available for this document.