Loading [MathJax]/extensions/MathMenu.js
Iterative decoding of multi-dimensional concatenated single parity check codes | IEEE Conference Publication | IEEE Xplore

Iterative decoding of multi-dimensional concatenated single parity check codes


Abstract:

This paper is concerned with the decoding technique and performance of multi-dimensional concatenated single-parity-check (SPC) code. A very efficient sub-optimal soft-in...Show More

Abstract:

This paper is concerned with the decoding technique and performance of multi-dimensional concatenated single-parity-check (SPC) code. A very efficient sub-optimal soft-in-soft-out decoding rule is presented for the SPC code, costing only 3 addition-equivalent-operations per information bit. Multi-dimensional concatenated coding and decoding principles are investigated. Simulation results of rate 5/6 and 4/5 3-dimensional concatenated SPC codes are provided. Performance of BER=10/sup -4/-10/sup -5/ can be achieved by the MAP and max-log-MAP decoders, respectively, with E/sub b//N/sub 0/ only 1 and 1.5 dB away from the theoretical limits.
Date of Conference: 07-11 June 1998
Date Added to IEEE Xplore: 06 August 2002
Print ISBN:0-7803-4788-9
Conference Location: Atlanta, GA, USA
References is not available for this document.

Select All
1.
C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes", Proc. IEEE ICC-93, pp. 1064-1070, 1993.
2.
S. Benedetto and G. Montorsi, "Unveiling turbo codes: some results on parallel concatenated decoding schemes", IEEE Trans. Inform. Theory, vol. IT-42, pp. 409-428, March 1996.
3.
D. Divsalar and F. Pollara, "Multiple turbo codes", Proc IEEE Milcom-95, pp. 279-285, 1995.
4.
J. Hagenauer, E. Offer and L. Papke, "Iterative decoding of binary block and convolutional codes", IEEE Trans. Inform. Theory, vol. IT-42, pp. 429-445, March 1996.
5.
L. Bahl, J. Cocke, F. Jelinek and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate", IEEE Trans. Inform. Theory, vol. IT-20, pp. 284-287, March 1974.
6.
J. Wolf, "Efficient maximum likelihood decoding of linear block codes using a trellis", IEEE Trans. Inform. Theory, vol. IT-24, pp. 76-81, Jan. 1978.
7.
Li Ping, S. Chan and K. L. Yeung, " Max-Log-MAP filtering algorithm for decoding product F 24 code ", Proc. IEEE ICC-97, pp. 1366-1370, 1997-June.
8.
Li Ping, S. Chan and K. L. Yeung, "Efficient soft-in-soft-out sub-optimal decoding rule for single parity check codes", Electronic Letters, vol. 33, no. 19, pp. 1614-1616, September 1997.
9.
Li Ping and S. Chan, "Iterative decoding of concatenated Hadamard codes", Proceedings.
10.
B. Sklar, Digital Communications, Prentice Hall, 1988.
11.
J. Lodge, R. Young, P. Hoeher and J. Hagenaur, "Separable MAP filter for decoding of product and concatenated codes", Proc. IEEE ICC-93, pp. 1740-1745, 1993-May.
12.
J. F. Cheng and R. J. McEliece, "Some high-rate near capacity codes for the Gaussian Channel", Proc. 34 Annual Allerton Conference on Communication Control and computing, 1996-Oct.
13.
P. Robertson, E. Villebrun and P. Hoeher, "A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain", Proc. IEEE ICC-95, pp. 1009-1013, 1995-June.
14.
R. A. Silverman and M. Balser, "Coding for a constant data rate source", IRE Trans. Inform. Theory, vol. IT-4, pp. 50-63, Jan. 1954.

Contact IEEE to Subscribe

References

References is not available for this document.