Loading [MathJax]/extensions/MathMenu.js
Edge-Detection Method for Image Processing Based on Generalized Type-2 Fuzzy Logic | IEEE Journals & Magazine | IEEE Xplore

Edge-Detection Method for Image Processing Based on Generalized Type-2 Fuzzy Logic


Abstract:

This paper presents an edge-detection method that is based on the morphological gradient technique and generalized type-2 fuzzy logic. The theory of alpha planes is used ...Show More

Abstract:

This paper presents an edge-detection method that is based on the morphological gradient technique and generalized type-2 fuzzy logic. The theory of alpha planes is used to implement generalized type-2 fuzzy logic for edge detection. For the defuzzification process, the heights and approximation methods are used. Simulation results with a type-1 fuzzy inference system, an interval type-2 fuzzy inference system, and with a generalized type-2 fuzzy inference system for edge detection are presented. The proposed generalized type-2 fuzzy edge-detection method was tested with benchmark images and synthetic images. We used the merit of Pratt measure to illustrate the advantages of using generalized type-2 fuzzy logic.
Published in: IEEE Transactions on Fuzzy Systems ( Volume: 22, Issue: 6, December 2014)
Page(s): 1515 - 1525
Date of Publication: 02 January 2014

ISSN Information:

References is not available for this document.

I. Introduction

An edge may be the result of changes in light absorption, color, shade, and texture, and these changes can be used to determine the depth, size, orientation, and surface properties of a digital image [1]. In analyzing the image digitally, edge detection involves filtering irrelevant information to select the edge points. The detection of subtle changes may be mixed up by noise and this depends on the pixel threshold of change that defines an edge. Detection of these continuous edges is very difficult and time consuming especially when an image is corrupted by noise [2].

Select All
1.
V. Torre and T. A. Poggio, "On edge detection", IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 147-163, Mar. 1986.
2.
M. Setayesh, M. Zhang and M. Johnston, "Effects of static and dynamic topologies in particle swarm optimisation for edge detection in noisy images", Proc. IEEE Congr. Evol. Comput., pp. 1-8, 2012.
3.
J. Canny, "A computational approach to edge detection", IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986.
4.
T. Shimada, F. Sakaida, H. Kawamura and T. Okumura, "Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast", Remote Sens. Environ., vol. 98, no. 1, pp. 21-34, 2005.
5.
A. A. Goshtasby, 2-D and 3-D Image Registration: For Medical Remote Sensing and Industrial Applications, USA, NJ, Hoboken:Wiley, pp. 34-39, 2005.
6.
A. Kazerooni, A. Ahmadian, N. D. Serej, H. S. Rad, H. Saberi, H. Yousefi, et al., "Segmentation of brain tumors in MRI images using multi-scale gradient vector flow", Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., pp. 7973-7976, 2011.
7.
B. Siliciano, L. Sciavicco, L. Villani and G. Oriolo, Robotics: Modelling Planning and Control, USA, NY, New York:Springer, pp. 415-418, 2010.
8.
Z. Hocenski, S. Vasilic and V. Hocenski, "Improved canny edge detector in ceramic tiles defect detection", Proc. IEEE 32nd Annu. Conf. Ind. Electron., pp. 3328-3331, 2006.
9.
C. Tao, W. Thompson and J. Taur, "A fuzzy if-then approach to edge detection", Proc. IEEE 2nd Int. Conf. Fuzzy Syst., vol. 2, pp. 1356-1360, 1993.
10.
Z. Talai and A. Talai, "A fast edge detection using fuzzy rules", Proc. Int. Conf. Commun. Comput. Control Appl., pp. 1-5, 2011-Mar.
11.
L. Hu, H. D. Cheng and M. Zhang, "A high performance edge detector based on fuzzy inference rules", Inf. Sci., vol. 177, no. 21, pp. 4768-4784, Nov. 2007.
12.
T. Pham and L. Van Vliet, "Blocking artifacts removal by a hybrid filter method", Proc. 11th Annu. Conf. Adv. School Comput. Imag., pp. 372-377, 2005.
13.
O. P. Verma and R. Sharma, "An optimal edge detection using universal law of gravity and ant colony algorithm", Proc. World Congr. Inf. Commun. Technol., pp. 507-511, 2011-Dec.
14.
P. Agrawal, S. Kaur, H. Kaur and A. Dhiman, "Analysis and synthesis of an ant colony optimization technique for image edge detection", Proc. Int. Conf. Comput. Sci., pp. 127-131, 2012-Sep.
15.
H. Bustince, E. Barrenechea, M. Pagola and J. Fernandez, "Interval-valued fuzzy sets constructed from matrices: Application to edge detection", Fuzzy Sets Syst., vol. 160, no. 13, pp. 1819-1840, Jul. 2009.
16.
O. Mendoza, P. Melin and G. Licea, "A new method for edge detection in image processing using interval type-2 fuzzy logic", Proc. IEEE Int. Conf. Granular Comput., pp. 151-151, 2007-Nov.
17.
O. Mendoza, P. Melin and G. Licea, "Interval type-2 fuzzy logic for edges detection in digital images", Int. J. Intell. Syst., vol. 24, no. 11, pp. 1115-1133, 2009.
18.
P. Melin, O. Mendoza and O. Castillo, "An improved method for edge detection based on interval type-2 fuzzy logic", Expert Syst. Appl., vol. 37, no. 12, pp. 8527-8535, Dec. 2010.
19.
R. Biswas and J. Sil, "An improved canny edge detection algorithm based on type-2 fuzzy sets", Procedia Technol., vol. 4, pp. 820-824, Jan. 2012.
20.
21.
J. M. S. Prewitt, "Object enhancement and extraction" in Picture Analysis and Psychopictorics, USA, NY, New York:Academic, pp. 75-149, 1970.
22.
R. Kirsch, "Computer determination of the constituent structure of biological images", Comput. Biomed. Res., vol. 4, pp. 315-328, 1971.
23.
S. Chen, Y. Chang and J. Pan, "Fuzzy rules interpolation for sparse fuzzy rule-based systems based on interval type-2 Gaussian fuzzy sets and genetic algorithms", IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 412-425, Jun. 2013.
24.
C. Hsu and C. Juang, "Evolutionary robot wall-following control using type-2 fuzzy controller with species-DE-activated continuous ACO", IEEE Trans. Fuzzy Syst., vol. 21, no. 1, pp. 100-112, Feb. 2013.
25.
H. Zhou and H. Ying, "A method for deriving the analytical structure of a broad class of typical interval type-2 Mamdani fuzzy controllers", IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 447-458, Jun. 2013.
26.
X.-J. Li and G.-H. Yang, "Switching-type H∞ filter design for T–S fuzzy systems with unknown or partially unknown membership functions", IEEE Trans. Fuzzy Syst., vol. 21, no. 2, pp. 385-392, Apr. 2013.
27.
C. Wagner and H. Hagras, "Toward general type-2 fuzzy logic systems based on zSlices", IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 637-660, Aug. 2010.
28.
C. Wagner and H. Hagras, "Employing zSlices based general type-2 fuzzy sets to model multi level agreement", Proc. IEEE Symp. Adv. Type-2 Fuzzy Logic Syst., pp. 50-57, 2011-Apr.
29.
J. M. Mendel, F. Liu and D. Zhai, "α -Plane representation for type-2 fuzzy sets: Theory and applications", IEEE Trans. Fuzzy Syst., vol. 17, no. 5, pp. 1189-1207, Oct. 2009.
30.
J. M. Mendel, "Comments on alpha-plane representation for type-2 fuzzy sets: Theory and applications", IEEE Trans. Fuzzy Syst., vol. 18, no. 1, pp. 229-230, Feb. 2010.
Contact IEEE to Subscribe

References

References is not available for this document.