Loading [a11y]/accessibility-menu.js
Parameters Identification and Gas Behavior Characterization of DBD Systems | IEEE Journals & Magazine | IEEE Xplore

Parameters Identification and Gas Behavior Characterization of DBD Systems


Abstract:

This paper proposes an efficient modeling and an identification method for dielectric barrier discharge (DBD) systems, based on input–output (current–voltage) experimenta...Show More

Abstract:

This paper proposes an efficient modeling and an identification method for dielectric barrier discharge (DBD) systems, based on input–output (current–voltage) experimental measurements. The DBD is modeled using an equivalent electric circuit associated with a differential equation that describes the dynamics of its conductance. This equation assumes a homogeneous behavior of the gas. This paper introduces a series of polynomial terms of the current of the gas into the conductance equation. These terms, after identification, are a very useful tool to analyze the physical mechanisms that take place in the gas. The identification process also returns the numerical values of other DBD parameters, such as associated capacitances and the breakdown voltage. In addition, an asymmetric model for the gas, which considers the direction of the current, is proposed to consider the possible geometrical dissimilarity between the two electrodes of the DBD setup. Experimental measurements taken on two different DBD applications are used for validating the proposed approach.
Published in: IEEE Transactions on Plasma Science ( Volume: 41, Issue: 8, August 2013)
Page(s): 2335 - 2342
Date of Publication: 26 July 2013

ISSN Information:

References is not available for this document.

Select All
1.
U. Kogelschatz, "Dielectric-barrier discharges: Their history discharge physics and industrialapplications", Plasma Chem. Plasma Process., vol. 23, no. 1, pp. 1-46, 2003.
2.
B. Eliasson and U. Kogelschatz, "Modeling and applications of silentdischarge plasmas", IEEE Trans. Plasma Sci., vol. 19, pp. 309-323, Apr. 1991.
3.
H. Wagner, R. Brandenburg, K. Kozlov, A. Sonnenfeld, P. Michel and J. Behnke, "The barrier discharge: Basic properties and applications to surface treatment", Vacuum, vol. 71, no. 3, pp. 417-436, 2003.
4.
H. Piquet, R. Diez, J. Blaquière, S. Bhosle and N. Roux, "DBD lamp converter design using an electrical model of the load", Math. Comput. Simul., vol. 81, pp. 420-432, Oct. 2010.
5.
J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, et al., "Nonlinear black-box modeling in system identification: A unifiedoverview", Automatica, vol. 31, no. 12, pp. 1691-1724, 1995.
6.
A. Juditsky, H. Hjalmarsson, A. Benveniste, B. Delyon, L. Ljung, J. Sjöberg, et al., "Nonlinear black-box models in systemidentification: Mathematical foundations", Automatica, vol. 31, no. 12, pp. 1725-1750, 1995.
7.
J. Castano, F. Ruiz and J. Régnier, "A fast approximation algorithm for set-membership system identification", Proc. 18th IFAC World Congr., vol. 18, pp. 4410-4415, 2011.
8.
R. Diez, J.-P. Salanne, H. Piquet, S. Bhosle and G. Zissis, "Predictivemodel of a DBD lamp for power supply design and method for the automatic identification of itsparameters", Eur. Phys. J. Appl. Phys., vol. 37, no. 3, pp. 307-313, 2007.
9.
T. Liu, K. Tseng and D. Vilathgamuwa, "A PSPICE model for the electrical characteristics of fluorescent lamps", Proc. 29th Annu. IEEE PESC Rec., vol. 2, pp. 1749-1754, 1998-May.
10.
D. Thomas, E. Pereira, C. Christopoulos and A. Howe, "The simulation of circuit breakerswitching using a composite cassie-modified Mayr model", IEEE Trans. Power Del., vol. 10, no. 4, pp. 1829-1835, Oct. 1995.
11.
V. Tarasenko, S. Avdeev, M. Erofeev, M. Lomaev, E. Sosnin, V. Skakun, et al., "High power VUV and UVexcilamps", Proc. IEEE ICOPS, pp. 1-1, 2009-Jun.
12.
M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts and M. V. Erofeev, "Excilamps: Efficient sources ofspontaneous UV and VUV radiation", Phys.-Uspekhi, vol. 46, no. 2, pp. 193-193, 2003.
13.
S.-H. Park, T.-S. Cho, K. Becker and E. Kunhardt, "Capillaryplasma electrode discharge as an intense and efficient source of vacuum ultraviolet radiation for plasmadisplay", IEEE Trans. Plasma Sci., vol. 37, pp. 1611-1614, Aug. 2009.
14.
M. Lomaev, E. Sosnin, V. Tarasenko, D. Shits, V. Skakun, M. Erofeev, et al., "Capacitive and barrier dischargeexcilamps and their applications (review)", Instrum. Experim. Tech., vol. 49, no. 5, pp. 595-616, 2006.
15.
D. W. Marquardt, "Analgorithm for least-squares estimation of nonlinear parameters", J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431-441, 1963.
16.
J. More, "The Levenberg–Marquardt algorithm: Implementation and theory" in Numerical Analysis, Germany, Berlin:Springer-Verlag, vol. 630, pp. 105-116, 1978.
17.
T. Coleman and Y. Li, "Aninterior trust region approach for nonlinear minimization subject to bounds", SIAM J. Optim., vol. 6, no. 2, pp. 418-445, 1993.
18.
T. F. Coleman and Y. Li, "On the convergence of interior-reflectiveNewton methods for nonlinear minimization subject to bounds", Math. Program., vol. 67, no. 1–3, pp. 189-224, 1994.
19.
X. Bonnin, H. Piquet, N. Naude, N. Gherardi and J. Blaquiere, "Alimentation électrique des dispositifs à décharge à barrièrediélectrique (DBD)", Proc. Electronique Puissance Futur, 2011.
20.
D. Florez, R. Diez, K. Hay and H. Piquet, "DBD excimer lamp power supply with fullycontrolled operating conditions", Proc. 13th Int. Conf. OPTIM, pp. 1346-1352, 2012-May.
Contact IEEE to Subscribe

References

References is not available for this document.