Abstract:
For the noninvasive diagnosis of heart disease based on the acoustic characteristics of the heart muscle, we have developed a new method for accurately tracking the movem...Show MoreMetadata
Abstract:
For the noninvasive diagnosis of heart disease based on the acoustic characteristics of the heart muscle, we have developed a new method for accurately tracking the movement of the heart wall. By this method, a velocity signal of the heart wall with a small amplitude of less than 10 /spl mu/m on the motion resulting from a heartbeat with large amplitude of 10 mm can be successfully detected with sufficient reproducibility in the frequency range up to several hundred Hertz continuously for periods of about 10 heartbeats. In this paper, the method is applied to multiple points preset in the left ventricular (LV) wall along the ultrasonic beam so that the spatial (depth) distributions of the velocity at these points are simultaneously obtained. The motion of the heart wall is divided into the following two components: parallel global motion of the heart wall and the change in myocardial layer thickening at each depth across the LV wall during myocardial contraction/relaxation. The latter component is superimposed on the M (motion) mode image using a color code to map contraction as red and expansion as blue. By preliminary human studies, the principle of the method proposed in this paper is verified and the frequency band of the components generated by thickening and/or thinning in the myocardium is identified. This new approach offers potential for research on noninvasive acoustical diagnosis of myocardial local motility, that is, the myocardial layer function at each depth in the ventricular wall.
Published in: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control ( Volume: 44, Issue: 4, July 1997)
DOI: 10.1109/58.655190
References is not available for this document.
Select All
1.
H. Kanai, M. Sato, Y. Koiwa and N. Chubachi, "Transcutaneous measurement and spectrum analysis of heart wall vibrations", IEEE Trans. Ultrason. Ferrolect. Freq. Contr., vol. 43, pp. 791-810, Sept. 1996.
2.
S. Satomura, "Ultrasonic Doppler method for the inspection of Cardiac function", J. Acoust. Soc. Amer., vol. 29, pp. 1181-1185, Nov. 1957.
3.
D. W. Baker, "Pulsed ultrasonic Doppler blood-flow sensing", IEEE Trans. Sonics Ultrason., vol. SU-17, pp. 170-185, July 1970.
4.
F. D. McLeod and M. Anliker, "A multiple-gate pulsed directional Doppler flowmeter", Proc. IEEE Ultrason. Symp., 1971-Dec.
5.
S. L. Johnson, D. W. Baker, R. A. Lute and H. T. Dodge, "Doppler echocardiography", Circulation, vol. XLVIII, pp. 810-822, Oct. 1973.
6.
F. E. Barber, D. W. Baker, A. W. C. Nation, D. E. Strandness Jr. and J. M. Reid, "Ultrasonic duplex echo-Doppler scanner", IEEE Trans. Biomed. Eng., vol. BME-21, pp. 109-113, Mar. 1974.
7.
C. J. Hartley, H. G. Hanley, R. M. Lewis and J. S. Cole, "Synchronized pulsed Doppler blood flow and ultrasonic dimension measurement in conscious dogs", Ultras. Med. Biol., vol. 4, pp. 99-110, 1978.
8.
M. Brandestini, "TopoflowA digital full range Doppler velocity meter", IEEE Trans. Sonics Ultrason., vol. SU-25, pp. 287-293, Sept. 1978.
9.
E. Wildi, J. W. Knutti, H. V. Allen and J. D. Meindl, "Dynamics and limitations of blood/muscle interface detection using Doppler power returns", IEEE Trans. Biomed. Eng., vol. BME-27, pp. 565-573, Oct. 1980.
10.
W. D. Barber, J. W. Eberhard and S. G. Karr, "A new time domain technique for velocity measurements using Doppler ultrasound", IEEE Trans. Biomed. Eng., vol. BME-32, pp. 213-229, Mar. 1985.
11.
C. Kasai, K. Namekawa, A. Koyama and R. Omoto, "Real-time two-dimensional blood flow imaging using an autocorrelation technique", IEEE Trans. Sonics Ultrason., vol. SU-32, pp. 458-463, May 1985.
12.
R. M. Olson and D. K. Shelton, "A nondestructive technique to measure wall displacement in the thoracic aorta", J. Appl. Phys., vol. 32, pp. 147-151, Jan. 1972.
13.
R. M. Olson and J. P. Cooke, "A nondestructive ultrasonic technique to measure diameter and blood flow in arteries", IEEE Trans. Biomed. Eng., vol. BME-21, pp. 168-171, 1974.
14.
J. O. Arndt, "The diameter of the intact carotid artery in man and its change with pulse pressure", Pflüegers Arch., vol. 301, pp. 230-240, 1968.
15.
D. J. Mozersky, D. S. Summer, D. E. Hokanson and D. E. Strandness Jr., "Transcutaneous measurement of the elastic properties of the human femoral artery", Circulation, vol. XLVI, pp. 948-955, Nov. 1972.
16.
A. P. G. Hoeks, C. J. Ruissen, P. Hick and R. S. Reneman, "Transcutaneous detection of relative changes in artery diameter", Ultras. Med. Biol., vol. 11, no. 1, pp. 51-59, 1985.
17.
W. T. Kemmerer, R. W. Ware, H. F. Stegall, J. L. Morgan and R. Kirby, "Blood pressure measurement by Doppler ultrasonic detection of arterial wall motion", Surg Gynec. Obstet., vol. 131, pp. 1141-1147, Dec. 1970.
18.
K. Lindström, K. Marsal, G. Gennser, L. Bengtsson, M. Benthin and P. Dahl, "Device for measurement of fetal breathing movements. 1. The TD-recorder. A new system for recording the distance between two echogenerating structures as a function of time", Ultras. Med. Biol., vol. 3, pp. 143-151, 1977.
19.
D. E. Hokanson, D. E. Strandness Jr. and C. W. Miller, "An echo-tracking system for recording arterial wall motion", IEEE Trans. Sonics Ultrason., vol. SU-17, pp. 130-132, July 1970.
20.
D. E Hokanson, D. J. Monzersky, S. D. Sumner and D. E. Strandness Jr., " A phase-locked echo tracking system for recording arterial diameter changes in vivo ", J. Appl. Phys., vol. 32, pp. 728-733, May 1972.
21.
K. Nakayama and S. Sato, "Ultrasonic measurement of arterial wall movement utilizing phase-tracking system", Digest 10th Int. Conf. Med. Biol. Eng., pp. 318, 1973.
22.
D. N. White and R. J. Stevenson, "Transient variations in the systolic pulsations in amplitude of intracranial echoes their artificial origin", Neurology, vol. 26, pp. 683-689, 1976.
23.
C. F. Olsen, "Doppler ultrasound: a technique for obtaining arterial wall motion parameters", IEEE Trans. Sonics Ultrason., vol. SU-24, pp. 354-358, June 1977.
24.
L. W. Korba, R. S. C. Cobbold and A. J. Cousin, "An ultrasonic imaging and differential measurement system for the study of fetal respiratory movements", Ultras. Med. Biol., vol. 5, pp. 139-149, 1979.
25.
I. Rapoport and A. J. Cousin, "New phase-lock tracking instrument for foetal breathing monitoring", Med. Biol Eng. Comput., vol. 20, pp. 1-6, Jan. 1982.
26.
D. H. Groves, T. Powalowski and D. N. White, "A digital technique for tracking moving interfaces", Ultras. Med. Biol., vol. 8, no. 2, pp. 185-190, 1982.
27.
C. J. Hartley, H. Litowitz, R. S. Rabinovitz, W. X. Zhu, J. E. Chelley, L. H. Michael, et al., "An ultrasonic method for measuring tissue displacement: technical details and validation for measuring myocardial thickening", IEEE Trans. Biomed. Eng., vol. BME-38, pp. 735-747, Aug. 1991.
28.
L. S. Wilson and D. E. Robinson, "Ultrasonic measurement of small displacements and deformations of tissue", Ultrason. Imag., vol. 4, pp. 71-82, 1982.
29.
C. J. Hartley, L. A. Latson, L. H. Michael, C. L. Seidel, R. M. Lewis and M. L. Entman, "Doppler measurement of myocardial thickening with single epicardial transducer", Amer. J. Physiol., vol. 245, pp. H1066-H1072, 1983.
30.
A. P. G. Hoeks, P. J. Brands, F. A. M. Smeets and R. S. Reneman, "Assessment of the distensibility of wuperficial arteries", Ultras. Med. Biol., vol. 16, no. 2, pp. 121-128, 1990.