Loading [MathJax]/extensions/MathMenu.js
Influence of Neutral Line to the Optimal Drive Current of PMAC Motors | IEEE Journals & Magazine | IEEE Xplore

Influence of Neutral Line to the Optimal Drive Current of PMAC Motors


Abstract:

The optimal drive current can reduce both the torque ripple and power loss in driving the permanent magnetic (PM) AC motor. This paper presents an analytical model for ca...Show More

Abstract:

The optimal drive current can reduce both the torque ripple and power loss in driving the permanent magnetic (PM) AC motor. This paper presents an analytical model for calculating the optimal drive current of the PMAC motor with surface mount PM rotor. Both the motors with and without the neutral line are analyzed. Theoretical analysis shows that, when the back-emf of the windings contains triple order harmonics, the neutral line of the motor can let the optimal drive current be different from the one without the neutral line, and it can also make the optimal drive current be more effective in the loss and torque ripple reduction. Two spindle motors are used in the analysis to show the influences of the optimal model presented.
Published in: IEEE Transactions on Magnetics ( Volume: 49, Issue: 6, June 2013)
Page(s): 2483 - 2488
Date of Publication: 30 May 2013

ISSN Information:

References is not available for this document.

I. Introduction

From the point of view of quantity, a permanent magnetic (PM) AC (PMAC) motor with surface mount PM rotor (SM-PMAC motor) is more popular than other types of PMAC motors. The spindle motor used in hard disk drive is the typical SM-PMAC motor, and the motor with nine slots and six magnetic pole-pair is shown in Fig. 1. for this kind of motor, in linear state, the winding inductance is independent of the rotor position; therefore its and are the same [1]. A concern is how to realize the optimal current in a SM-PMAC motor in many applications.

Select All
1.
M. Štulrajter, V. Hrabovcová and M. Franko, "Permanent magnet synchronousmotor control theory", J. Electrical Eng., vol. 58, no. 2, pp. 79-84, 2007.
2.
C. BI, N. P. Hla, C. S. Soh and Q. Jiang, "An optimal drive current model and its application to reluctancemotor", Proc. XIX Int. Conf. Electrical Machines (ICEM-2010), 2010-Sep.-6–8.
3.
N. V. Olarescu, M. Weinmann, S. Zeh, S. Musuroi and C. Sorandaru, "Optimum current reference generation algorithmfor PMSMS drive system for wide speed range", Proc. MELECON 2010–2010 15th IEEE Mediterranean Electrotechnical Conf., pp. 1073-1077.
4.
C. Mademlis, I. Kioskeridis and N. Margaris, "Optimal efficiency controlstrategy for interior permanent magnet synchronous motor drives", IEEE Trans. Energy Conversion, vol. 19, no. 4, pp. 715-723, Dec. 2004.
5.
S. Shinnaka and T. Sagawa, "New optimal current controlmethods for energy-efficient and wide speed-range operation of hybrid-fieldsynchronous motor", IEEE Trans. Indust. Electron., vol. 54, no. 5, pp. 2443-2450, Oct. 2007.
6.
P. L. Chapman, S. D. Sudhoff and C. A. Whitcomb, "Optimal current control strategiesfor surface-mounted PM synchronous machine drives", IEEE Trans. Energy Conversion, vol. 14, no. 4, pp. 1043-1050, Dec. 1999.
7.
K. Malekian, M. R. Sharif and J. Milimonfared, "An optimal current vector controlfor synchronous reluctance motors incorporating field weakening", Proc. 10th IEEE Int. Workshop Advanced Motion Control, pp. 393-398, 2008-Mar.-26–28.
8.
N. Bianchi, S. Bolognani and M. Zigliotto, "Time optimal current controlfor PMSM drives", Proc. IECON 02, 2002-Nov.-1.
9.
C. Mademlis and N. Margaris, "Loss minimization in vector-controlledinterior permanent-magnet synchronous motor drives", IEEE Trans. Indust. Electron., vol. 49, no. 6, pp. 1344-1347, Dec. 2002.
10.
Y. Nakamura, "High-efficiency drive due topower factor control of a permanent magnet synchronous motor", IEEE Trans. Power Electron., vol. 10, no. 2, pp. 247-253, Mar. 1995.
11.
P. L. Chapman, S. D. Sudhoff and C. A. Whitcomb, "Torque ripple minimizationin permanent magnet synchronous servo drive", IEEE Trans. Energy Conversion, vol. 14, no. 3, pp. 616-621, Sep. 1999.
12.
C. Mademlis, J. Xypteras and N. Margaris, "Loss minimization in surfacepermanent-magnet synchronous motor drives", IEEE Trans. Indust. Electron., vol. 47, no. 1, pp. 115-122, Feb. 2000.
13.
C. Bi, Q. Jiang, S. Lin, T. S. Low and A. A. Mamun, "Reduction of acoustic noise in FDB spindle motors by usingdrive technology", IEEE Trans. Magn., vol. 39, pp. 800-805, Mar. 2003.
14.
S. Morimoto, Y. Takeda and T. Hirasa, "Loss minimization control ofpermanent magnet synchronous motor drives", IEEE Trans. Indust. Electron., vol. 41, no. 5, pp. 511-517, Oct. 1994.
15.
X. Ojeda, X. Mininger, M. Gabsi and M. Lecrivain, "Sinusoidal feeding for switched reluctancemachine: Application to vibration damping", Proc. Int. Conf. Electrical Machine ICEM, 2008-Sep.-6–9.
16.
T. S. Low, B. Chao and K. T. Chang, "Motor identity'—A motor model fortorque analysis and control", IEEE Trans. Indust. Electron., vol. 43, no. 2, pp. 285-291, Apr. 1996.
17.
F. F. Bernal, A. Garcı´a-Gerrada and R. Faure, "Model-based loss minimization for DC andAC vector-controlled motors including core saturation", IEEE Trans. Industry Applicat., vol. 36, no. 3, pp. 755-763, May/Jun. 2000.
18.
T. S. Low, B. Chao and K. T. Chang, "Motor identity'—A motor model fortorque analysis and control", IEEE Trans. Indust. Electron., vol. 43, no. 2, pp. 285-291, Apr. 1996.
Contact IEEE to Subscribe

References

References is not available for this document.