Abstract:
A novel two-staged photonic transistor with high operating speed, low switching power and high switching gain was recently proposed. Based on the manipulation of optical ...Show MoreMetadata
Abstract:
A novel two-staged photonic transistor with high operating speed, low switching power and high switching gain was recently proposed. Based on the manipulation of optical interference in an active directional coupler by optically controlled absorption and gain, two complementary device types were conceptually evaluated through the use of time domain technique showing \sim 10^{5} times higher figure of merit compared to conventional approaches. With the joint usage of both device types, the photonic transistor could function as wavelength converter, pulse regenerator and logical operator. In this work, we identify the operational regimes of the photonic transistor that helps in reducing the footprint and operating intensities to achieve a switching gain of at least \sim2 (or 3 dB). A recently proposed theoretical framework that calculates the spatial profiles of optical fields and complex permittivities seen by them in photonic structures with multiple active and passive sections is utilized for the purposes. We show that the operational intensity and wavelengths of interacting fields in the photonic transistor must be such that \alpha_{0}{\rm L}_{1}>=26 and {\rm g}_{0}{\rm L}_{2}>=3.2 to achieve a {\rm switching}\ {\rm gain}>=2, where \alpha_{0}={\rm absorption}\ {\rm coefficient} of the short wavelength, {\rm g}_{0}={\rm pumped}\ {\rm medium}\ {\rm gain}\ {\rm coefficient} seen by long wavelength beams, {\rm L}_{1}={\rm length}\ {\rm of}\ {\rm first}\ {\rm stage} and {\rm L}_{2}={\rm length}\ {\rm of}\ {\rm second}\ {\rm stage}.
Published in: Journal of Lightwave Technology ( Volume: 31, Issue: 13, July 2013)
References is not available for this document.
Select All
1.
J. Wang, "Pattern effect mitigation techniquesfor all-optical wavelength converters based on semiconductor optical amplifiers", Karlsruhe Ser. Photon. Commun., vol. 3, 2008.
2.
T. Kise, K. N. Nguyen, J. M. Garcia, H. N. Poulsen and D. J. Blumenthal, "Cascadability properties ofMZI-SOA-based all-optical 3R regenerators for RZ-DPSK signals", Opt. Exp., vol. 19, pp. 9330-9335, 2011.
3.
J. D. Merlier, G. Morthier, S. Verstuyft, T. V. Caenegem, I. Moerman, P. V. Daele, et al., "Experimental demonstration of all-opticalregeneration using an MMI-SOA", IEEE Photon. Lett., vol. 14, pp. 660-662, 2002.
4.
D. A. B. Miller, "Are optical transistors thelogical next step?", Nat. Photon., vol. 4, pp. 3-5, 2010.
5.
Y. Huang and S.-T. Ho, "High-speed low-power photonic transistordevices based on optically-controlled gain or absorption to affect opticalinterference", Opt. Exp., vol. 16, pp. 16806-16824, 2008.
6.
J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Gottzinger, et al., "A single-molecule optical transistor", Nat. Lett., vol. 460, pp. 76-80, 2009.
7.
H. Mabuchi, "Cavity-QED models of switchesfor attojjoule-scale nanophotonic logic", Phys Rev. A, vol. 80, pp. 045802, 2009.
8.
L. T. Varghese, L. Fan, J. Wang, F. Gan, X. Wang, J. Wirth, et al., "A silicon optical transistor", Frontiers in Optics (FiO), 2012-Oct.
9.
S. M. Jensen, "The nonlinear coherent coupler", IEEE J. Quantum. Electron., vol. QE-18, pp. 1580-1583, 1982.
10.
P. Li Kam Wa, J. E. Stich, N. J. Mason, J. S. Roberts and P. N. Robson, "All optical multiple-quantum-wellwaveguide switch", Electron. Lett., vol. 21, pp. 26-28, 1985.
11.
J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve and G. I. Stegeman, " Ultrafast all-optical switchingin {rm Al}_{0.18}{rm Ga}_{0.82}{rm As} directional coupler in 1.55 mu{rmm} spectral region ", Electron. Lett., vol. 27, pp. 1709-1710, 1991.
12.
J. M. Liu and C. Yeh, "Optical switching by saturation-inducedphase changes in an active directional coupler", Appl. Phys. Lett., vol. 50, pp. 1625-1627, 1987.
13.
C. J. Setterlind and L. Thylén, "Directional coupler switcheswith optical gain", IEEE J. Quantum Electron., vol. QE-22, pp. 595-602, 1986.
14.
Y. Chen, A. W. Snyder and D. N. Payne, "Twin core nonlinear couplerswith gain and loss", IEEE J. Quantum Electron., vol. 28, pp. 239-245, 1992.
15.
F. D. Pasquale and H. E. Hernandez-Figueroa, "Improved all-optical switchingin a three-slab nonlinear directional coupler with gain", IEEE J. Quantum Electron., vol. 30, pp. 1254-1258, 1994.
16.
R. M. Geatches, S. V. Dewar and R. V. Penty, "Reduced-power semiconductorall-optical switch design", IEE Proc.-Optoelectron., vol. 144, pp. 2-7, 1997.
17.
D. A. O. Davies, M. A. Fisher, D. J. Elton, S. D. Perrin, M. J. Adams, G. T. Kennedy, et al., "Nonlinear switching in InGaAsPlaser amplifier directional couplers biased at transparency", Electron. Lett., vol. 29, pp. 710-711, 1993.
18.
B. Ma and Y. Nakano, "Realization of all-opticalwavelength converter based on directionally coupled semiconductor opticalamplifiers", IEEE Photon. Technol. Lett., vol. 11, pp. 188-190, 1999.
19.
M. Saitoh, B. Ma and Y. Nakano, "Static and dynamic characteristics analysisof all-optical wavelength conversion using directionally coupled semiconductoroptical amplifiers", IEEE J. Quantum Electron., vol. 36, pp. 984-990, 2000.
20.
G. P. Agrawal, "Gain nonlinearities in semiconductorlasers: Theory and application to distributed feedback lasers", IEEE J. Quantum. Electron., vol. QE-23, pp. 860-868, 1987.
21.
V. Krishnamurthy, K. Ravi and S.-T. Ho, "Analytical framework for the steady state analysis of wavelength-dependentand intensity-dependent interaction of multiple monochromatic beams in semiconductorphotonic structures with multiple active and passive sections", IEEE J. Quantum Electron., vol. 48, pp. 1282-1299, 2012.
22.
V. Krishnamurthy and B. Klein, "Comprehensive theory of plane-wave expansionbased eigenmode method for scattering-matrix analysis of photonic structures", J. Opt. Soc. Amer. B, vol. 26, pp. 1341-1349, 2009.
23.
L. A. Coldren, S. W. Corzine and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, USA, NJ, Hoboken:Wiley, 2012.
24.
Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, et al., "Room-temperature optical nonlinearitiesin GaAs", Phys. Rev. Lett., vol. 57, pp. 2446-2449, 1986.
25.
S. Lettieri, "Calculations of band-fillingoptical nonlinearities in extrinsic semiconductors beyond the low injectionlimit", J. Appl. Phys., vol. 95, pp. 5419-5428, 2004.
26.
A. Melikyan, H. Minassian, V. Truchin, E. Gini and G. Guekos, "Nonlinear interband absorption of intenselight wave in bulk InGaAsP", Opt. Comm., vol. 212, pp. 183-190, 2002.
27.
G. P. Agrawal, "Spectral holeburning and gainsaturation in semiconductor lasers: Strong signal theory", J. Appl. Phys., vol. 63, pp. 1232-1235, 1988.
28.
R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier and T. P. Pearsall, " An experimental determinationof the effective masses for {rm Ga}_{rmx}{rm In}_{1-{rm x}}{rm As}_{rm y}{rm P}_{1-{rm y}} ", Appl. Phys. Lett., vol. 34, pp. 492-494, 1979.
29.
Y. Wang, Y. Wei, Y. Huang, Y. Tu, D. Ng, C. W. Lee, et al., "Silicon/III-V laser with super-compact diffraction gratingfor WDM applications in electronic-photonic integrated circuits", Opt. Exp., vol. 19, pp. 2006-2013, 2011.