Abstract:
The magnetic blowing of an arc against a third so-called commutation electrode positioned perpendicularly to the discharge axis allowed the investigation of a reproducibl...Show MoreMetadata
Abstract:
The magnetic blowing of an arc against a third so-called commutation electrode positioned perpendicularly to the discharge axis allowed the investigation of a reproducible interaction of the plasma with this electrode. Cathodic arc spots were ignited on the commutation electrode with a negative-biased voltage and anodic spots with a positive-biased voltage. The delay times of arc spot ignition on cathodes have been measured in atmospheric pressure air for 24 different materials of high purity and for several materials of technical quality. Thereby, these materials were ordered as a function of delay time. The cathodic arc spot ignition can be divided into two different forms, one starting with a diffuse current transfer, and the other one initiated by a constricted ignition. The distribution of these forms depends mainly on the surface structure of the cathodes. A satisfactory explanation of the results can be given by proceeding on the assumption that surface effects are dominant over the bulk properties of the material.
Published in: IEEE Transactions on Plasma Science ( Volume: 25, Issue: 5, October 1997)
DOI: 10.1109/27.649631
References is not available for this document.
Select All
1.
R. Dreiskemper, G. Schro¨der and W. Bo¨tticher, "Light emission during cathode sheath formation in preionized high-pressure glow discharges", IEEE Trans. Plasma Sci., vol. 23, no. 2, pp. 180-187, 1995.
2.
D. H. J. Goodall, T. W. Conlon, C. Sofield and G. M. McCracken, "Investigation of arcing in the DITE tokamak", J. Nucl. Mater., vol. 76/77, pp. 492-498, 1978.
3.
I. I. Beilis, "Copper electrode damage mechanisms in a MHDG channel", High Temp., vol. 23, no. 3, pp. 471-478, 1985.
4.
P. Zhu, J. J. Lowke and R. Morrow, "A unified theory of free burning arcs cathode sheaths and cathodes", J. Phys. D: Appl. Phys., vol. 25, pp. 1221-1230, 1992.
5.
M. S. Benilov and A. Marotta, "A model of the cathode region of atmospheric pressure arcs", J. Phys. D: Appl. Phys., vol. 28, pp. 1869-1882, 1995.
6.
X. Zhou and J. Heberlein, "Analysis of the arc-cathode interaction of free-burning arcs", Plasma Sources Sci. Technol., vol. 3, pp. 564-574, 1994.
7.
N. A. Sanders and E. Pfender, "Measurement of anode falls and anode heat transfer in atmospheric pressure high intensity arcs", J. Appl. Phys., vol. 55, no. 3, pp. 714-722, 1984.
8.
G. Ecker, "Electrode components of the arc discharge", Ergebn. d. exakt. Naturwiss., vol. 33, pp. 1-104, 1961.
9.
A. E. Guile, "Electrode processes at non-refractory arc cathodes", Proc. 15th Int. Conf. Phenomena in Ionized Gases, pp. I65-I74, 1981.
10.
A. H. Hitchcock and A. E. Guile, "A scanning electron microscope study of the role of copper oxide layers on arc cathode erosion rates", J. Mater. Sci., vol. 12, pp. 1095-1104, 1977.
11.
Vacuum Arcs: Theory and Application., 1980.
12.
G. A. Mesyats and D. I. Proskurovsky, Pulsed Electrical Discharge in Vacuum., 1989.
13.
E. Hantzsche and B. Ju¨ttner, "Current density in arc spots", IEEE Trans. Plasma Sci., vol. PS-13, no. 5, pp. 230-234, 1985.
14.
V. I. Rakhovsky, "State of the art of physical models of vacuum arc cathode spots", IEEE Trans. Plasma Sci., vol. PS-15, no. 5, pp. 481-487, 1987.
15.
B. Ju¨ttner, "Characterization of the cathode spot", IEEE Trans. Plasma Sci., vol. PS-15, no. 5, pp. 474-480, 1987.
16.
B. Ju¨ttner, "The dynamics of arc cathode spots in vacuum: New measurements", J. Phys. D: Appl. Phys., vol. 30, pp. 221-229, 1997.
17.
E. Hantzsche, "Theoretische Modelle des kathodischen Brennflecks von Bogenentladungen", Contrib. Plasma Phys., vol. 31, no. 2, pp. 109-169, 1991.
18.
M. S. Benilov, "A self-consistent analytical model of arc spots on electrodes", IEEE Trans. Plasma Sci., vol. 22, no. 1, pp. 73-77, 1994.
19.
K.-P. Nachtigall and J. Mentel, "Measurement of arc spot formation delay times at cold cathodes in air", IEEE Trans. Plasma Sci., vol. 19, no. 5, pp. 942-946, 1991.
20.
K.-P. Nachtigall and J. Mentel, "Optical investigation of arc spot formation on cold cathodes in air", IEEE Trans. Plasma Sci., vol. 19, no. 5, pp. 947-953, 1991.
21.
R. Bayer, Untersuchung der Zu¨ndung von Lichtbogenfußpunkten auf kalten Elektroden in Abha¨ngigkeit von dem Material und der Oberfla¨chenbeschaffenheit, 1993.
22.
J. Mentel, R. Bayer, J. Schein and M. Schumann, "Interaction of a dense plasma with cold electrodes", High Temp. Chem. Processes, no. 3, pp. 627-638, 1994.
23.
"Arc spot ignition on cold electrodes in an ambient gas atmosphere", Phenomena in Ionized Gases 22nd ICPIG, pp. 278-288, 1996.
24.
J. Schein, M. Schumann and J. Mentel, "Optical investigation of arc spot formation on cold cathodes in noble gas atmosphere", IEEE Trans. Plasma Sci., vol. 24, no. 1, pp. 59-60, 1996.
25.
R. Bayer, J. Schein, M. Schumann and J. Mentel, "Optical investigation of the interaction of a dense plasma with cold cathodes in air", IEEE Transactions on Plasma Science, vol. 25, no. 5, pp. 1110-1116, October 1997.
26.
M. S. Benilov, "The ion flux from a thermal plasma to a surface", J. Phys. D: Appl. Phys., vol. 28, pp. 286-294, 1995.
27.
R. V. Latham, High Voltage Vacuum Insulation., 1981, 1995.
28.
B. Ju¨ttner and A. Zeitoun-Fakiris, Prebreakdown field emission influenced by ion bombardment and gas adsorption, 1990.
29.
P. M. Chung, L. Talbot and K. J. Touryan, Electric Probes in Stationary and Flowing Plasmas: Theory and Application., 1975.
30.
J. G. Laframboise and L. W. Parker, "Probe design for orbit-limited current collection", Phys. Fluids, vol. 16, no. 5, pp. 629-636, 1973.