Loading [MathJax]/extensions/MathMenu.js
Algorithmic Construction of Lyapunov Functions for Power System Stability Analysis | IEEE Journals & Magazine | IEEE Xplore

Algorithmic Construction of Lyapunov Functions for Power System Stability Analysis


Abstract:

We present a methodology for the algorithmic construction of Lyapunov functions for the transient stability analysis of classical power system models. The proposed method...Show More

Abstract:

We present a methodology for the algorithmic construction of Lyapunov functions for the transient stability analysis of classical power system models. The proposed methodology uses recent advances in the theory of positive polynomials, semidefinite programming, and sum of squares decomposition, which have been powerful tools for the analysis of systems with polynomial vector fields. In order to apply these techniques to power grid systems described by trigonometric nonlinearities we use an algebraic reformulation technique to recast the system's dynamics into a set of polynomial differential algebraic equations. We demonstrate the application of these techniques to the transient stability analysis of power systems by estimating the region of attraction of the stable operating point. An algorithm to compute the local stability Lyapunov function is described together with an optimization algorithm designed to improve this estimate.
Published in: IEEE Transactions on Circuits and Systems I: Regular Papers ( Volume: 60, Issue: 9, September 2013)
Page(s): 2533 - 2546
Date of Publication: 22 February 2013

ISSN Information:

References is not available for this document.

I. Introduction

A traditional approach to transient stability analysis of power systems involves the numerical integration of the nonlinear differential equations describing the complicated interactions between its components. This method provides an accurate description of transient phenomena but its computational cost prevents time-domain simulations from providing real-time transient stability assessments and significantly constraints the number of cases which can be analyzed [1].

Select All
1.
M. Ribens-Pavella, D. Ernst and D. Ruiz-Vega, Transient Stability of Power Systems: A Unified Approach to Assessment and Control, USA, MA, Boston:Kluwer, 2000.
2.
M. A. Pai, Energy Function Analysis for Power System Stability, USA, MA, Boston:Kluwer, 1989.
3.
A. A. Fouad and V. Vital, Power System Transient Stability Analysis Using the Transient Energy Function Method, USA, NJ, Englewood Cliffs:Prentice-Hall, 1992.
4.
M. Ribens-Pavella and P. G. Murthy, Transient Stability of Power Systems: Theory and Practice, USA, NY, New York:Wiley, 1994.
5.
H. D. Chiang, Direct Methods for Stability Analysis of Electric Power Systems, USA, NY, New York:Wiley, 2011.
6.
C. C. Chu and H. D. Chiang, "Boundary property of the BCUmethod for power system transient stability assessment", Proc. ISCAS, pp. 3453-3456, 2010-May.
7.
H. D. Chiang, C. C. Chu and G. Cauley, "Direct stability analysis ofelectric power systems using energy functions: Theory applications and perspective", Proc. IEEE, vol. 83, no. 11, pp. 1497-1529, Nov. 1995.
8.
H. D. Chiang and C. C. Chu, "Theoretical foundation of theBCU method for direct stability analysis of network-reduction power systemmodel with small transfer conductances", IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 42, pp. 252-265, May 1995.
9.
H. D. Chiang, "The BCU method for direct stability analysis of electric power systems: Theory and applications" in Systems Control Theory for Power Systems, USA, NY, New York:Springer-Verlag, vol. 64, 1995.
10.
A. Llamas, J. D. la Ree Lopez, L. Mili, A. G. Phadke and J. S. Thorp, "Clarifications of the BCU method for transientstability analysis", IEEE Trans. Power Systems, vol. 10, no. 1, pp. 210-219, Feb. 1995.
11.
F. Paganini and B. C. Lesieutre, "Generic properties one-parameterdeformations and the bcu method", IEEE Trans. Circuits Syst. I Fundam. Theory Appl., vol. 46, no. 6, pp. 760-763, Jun. 1999.
12.
M. A. Pai, Power System Stability: Analysis by the Direct Method of Lyapunov, New York:North-Holland, 1981.
13.
M. Ribbens-Pavella and F. J. Evans, "Direct methods for studyingdynamics of large-scale electric power systems—A survey", Automatica, vol. 21, pp. 1-21, Jan. 1985.
14.
R. Genesio, M. Tartaglia and A. Vicino, "On the estimation of asymptoticstability regions: State of the art and new proposals", IEEE Trans. Automatic Contr., vol. 30, no. 8, pp. 747-755, Aug. 1985.
15.
J. L. Willems and J. C. Willems, "The application of Lyapunovmethods to the computation of transient stability regions for multimachinepower systems", IEEE Trans. Power Apparatus Syst., vol. 89, no. 5, pp. 795-801, May 1970.
16.
N. Kakimoto, Y. Ohsawa and M. Hayashi, "Transient stability analysisof multimachine power systems with field flux decays via Lyapunovs directmethod", IEEE Trans. Power Apparatus and Systems, vol. 99, pp. 1819-1827, Sep. 1980.
17.
D. J. Hill and C. N. Chong, "Lyapunov functions of Lure-Postnikovform for structure preserving models of power systems", Automatica, vol. 25, pp. 453-460, May 1989.
18.
R. Ortega, M. Galaz, A. Astolfi, Y. Sun and T. Shen, "Transient stabilization of multimachine power systems withnontrivial transfer conductances", IEEE Trans. Automatic Contr., vol. 50, pp. 60-75, Jan. 2005.
19.
G. Chesi, "Estimating the domain of attractionfor non-polynomial systems via LMI optimizations", Automatica, vol. 45, pp. 1536-1541, Jun. 2009.
20.
G. Chesi, Domain of Attraction: Analysis and Control via SOS programming, U.K., London:Springer, 2011.
21.
H. G. Kwatny, L. Y. Bahar and A. K. Pasria, "Energy-like Lyapunov functionsfor power system stability analysis", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 32, no. 11, pp. 1140-1149, Nov. 1985.
22.
H. R. Pota and P. J. Moylan, "A new lyapunov function forinterconnected power system", IEEE Trans. Automatic Contr., vol. 37, no. 8, pp. 1192-1196, Aug. 1992.
23.
N. G. Bretas and L. F. C. Alberto, "Lyapunov function for powersystems with transfer conductances: Extension of the invariance principle", IEEE Trans. Power Syst., vol. 18, no. 2, pp. 769-777, May 2003.
24.
P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, 2000.
25.
A. Papachristodoulou and S. Prajna, "On the construction of Lyapunovfunctions using the sum of squares decomposition", Proc. IEEE Conf. Decision Contr., pp. 3482-3487, 2002-Dec.
26.
Z. J. Wloszek, R. Feeley, W. Tan, K. Sun and A. Packard, "Control Applications of Sum of Squares Programming" in Positive Polynomials in Control, Germany, Berlin Heidelberg:Springer-Verlag, pp. 3-22, 2005.
27.
A. Papachristodoulou and S. Prajna, "Analysis of nonpolynomial systems using the sum of squares decomposition" in Positive Polynomials in Control, Germany, Berlin Heidelberg:Springer-Verlag, pp. 23-43, 2005.
28.
S. Prajna, A. Papachristodoulou, P. Seiler and P. A. Parrilo, "SOSTOOLS and Its Control Applications" in Positive Polynomials in Control, Germany, Berlin, Heidelberg:Springer-Verlag, pp. 273-292, 2005.
29.
A. Papachristodoulou and S. Prajna, "A tutorial on sum of squarestechniques for systems analysis", Proc. 2005 American Contr. Conf., pp. 2686-2700, 2005-Jun.
30.
J. Anderson and A. Papachristodoulou, "A decomposition technique fornonlinear dynamical system analysis", IEEE Trans. Automatic Contr., vol. 57, pp. 1516-1521, Jun. 2012.
Contact IEEE to Subscribe

References

References is not available for this document.