Loading [MathJax]/extensions/MathZoom.js
Adaptive flux observer for induction machines with on-line estimation of stator and rotor resistances | IEEE Conference Publication | IEEE Xplore

Adaptive flux observer for induction machines with on-line estimation of stator and rotor resistances


Abstract:

A nonlinear adaptive control algorithm is proposed for induction machines. It is based on a two time-scale observer that allows the on-line identification of three critic...Show More

Abstract:

A nonlinear adaptive control algorithm is proposed for induction machines. It is based on a two time-scale observer that allows the on-line identification of three critical uncertain parameters, i.e., load torque and motor stator and rotor resistances. In addition, the set-point of the rotor flux is adjusted in order to minimize the Joule losses and to improve the power efficiency. Experimental results illustrate the feasibility of the developed approach.
Date of Conference: 04-06 September 2012
Date Added to IEEE Xplore: 21 January 2013
ISBN Information:
Conference Location: Novi Sad, Serbia
References is not available for this document.

I. Introduction

Induction motors are very used in industrial applications because they present some important advantages such as the lack of a brush-commutator, compact structure, overload capability and an overall robustness.

Select All
1.
R. Marino, P. Tomei, and C. M. Verrelli. Induction Motor Control Design. Springer, London, 2010
2.
R. Marino, S. Peresada, and P. Tomei. Exponentially convergent rotor resistance estimation for induction motors. IEEE Transactions on Industrial Electronics, 42(5): 508-515, 1995
3.
F. R. Salmasi, T. A. Najafabadi, and P. J. Maralani. An adaptive flux observer with online estimation of DC-link voltage and rotor resistance for VSI-based induction motors. IEEE Transactions on Power Electronics, 25(5): 1310-1319, 2010
4.
M. S. Zaky. Stability analysis of speed and stator resistance estimators for sensorless induction motor drives, IEEE Transaction on Industrial Electronics, 59(2): 858-870, 2012
5.
L. J. Garces. Parameter adaption for the speed-controlled static AC drive with a squirrel-cage induction motor. IEEE Transaction of Industry Applications, 16(2): 173178, 1980
6.
T. A. Najafabadi, F. R. Salmasi, and P. Jabehdar-Maralani. Detection and isolation of speed-, DC-link voltage-, and currentsensor faults based on an adaptive observer in induction-motor drives, IEEE Transactions on Industrial Applications, 58(5): 1662-1672, 2011
7.
S. H. Jeon, K. K. Oh, and J. Y. Choi. Flux observer with online tuning of stator and rotor resistances for induction motors. IEEE Transactions on Industrial Electronics, 49(3): 653-664, 2002
8.
R. Marino, S. Peresada, and P. Tomei. On-line stator and rotor resistance estimation for induction motors. IEEE Transactions on Control Systems Technology, 8(3): 570-579, 2000
9.
P. L. Jansen and R. D. Lorenz. A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drives. IEEE Transactions on Industry Applications, 30(1): 101-110, 1994
10.
K. Wang, J. Chiasson, M. Bodson, and L. M. Tolbert. An online rotor time constant estimator for the induction machine. IEEE Trans. on Control Systems Technology, 15(2): 339-348, 2007
11.
M. Cirrincione, M. Pucci, G. Cirrincione, and G. A. Capolino. A new experimental application of least-squares techniques for the estimation of the induction motor parameters. IEEE Transactions on Industry Applications, 39(5): 1247-1256, 2003
12.
J. Stephan, M. Bodson, and J. Chiasson. Real-time estimation of the parameters and fluxes of induction motors. IEEE Transactions on Industry Applications, 30(3): 746-759, 1994
13.
M. Rashed, P. F. A. MacConnell, and A. F. Stronach. Nonlinear adaptive state-feedback speed control of a voltage-fed induction motor with varying parameters. IEEE Transactions on Industry Applications, 42(3): 723-732, 2006
14.
E. Etien, C. Chaigne, and N. Bensiali, On the stability of full adaptive observer for induction motor in regenerating mode. IEEE Transactions on Industrial Electronics, 57(5): 1599-1608, 2010
15.
S. M. N. Hasan and I. Husain. A Luenberger-sliding mode observer for online parameter estimation and adaptation in highperformance induction motor drives. IEEE Transactions on Industry Applications, 45(2): 772-781, 2009
16.
G. Bartolini, A. Pisano, and P. Pisu. Simplified exponentially convergent rotor resistance estimation for induction motors. IEEE Transactions on Automatic Control, 48(2): 325-330, 2003
17.
A. B. Proca and A. Keyhani. Sliding-mode flux observer with online rotor parameter estimation for induction motors. IEEE Transactions on Industrial Electronics, 54(2): 716-723, 2007
18.
G. Kenné, R. S. Simo, F. Lamnabhi-Lagarrigue, A. Arzandé, and J. C. Vannier. An online simplified rotor resistance estimator for induction motors. IEEE Transactions on Control Systems Technology, 18(5): 1188-1194, 2010
19.
D. J. Atkinson, P. P. Acarnley, and J. W. Finch. Observers for induction motor state and parameter estimation. IEEE Transactions on Industry Applications, 27(6): 1119-1127, 1991
20.
N. T. West and R. D. Lorenz. Digital implementation of stator and rotor flux-linkage observers and a stator-current observer for deadbeat direct torque control of induction machines. IEEE Transactions on Industry Applications, 45(2): 729-736, 2009
21.
L. C. Zai, C. L. DeMarco, and T. A. Lipo. An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives. IEEE Transactions on Industry Applications, 28(1): 96-104, 1992
22.
S. K. Sul. A novel technique of rotor resistance estimation considering variation of mutual inductance. IEEE Transactions on Industry Applications, 25(4): 578-587, 1989
23.
C. C. Chan and H. Wang. An effective method for rotor resistance identification for high-performance induction motor vector control. IEEE Transactions on Industrial Electronics, 37(6): 477-482, 1990
24.
J. Holtz and T. Thimm. Identification of the machine parameters in a vector-controlled induction motor drive. IEEE Transactions on Industry Applications, 27(6): 1111-1118, 1991
25.
H. A. Toliyat, M. S. Arefeen, K. M. Rahman, and D. Figoli. Rotor time constant updating scheme for a rotor flux-oriented induction motor drive. IEEE Trans. on Pow. Electr. , 14(5): 850-857, 1999
26.
T. Matsuo and T. A. Lipo. A rotor parameter identification scheme for vector-controlled induction motor drives. IEEE Transactions on Industry Applications, IA-21(4): 624-632, 1985
27.
N. R. Klaes. Parameter identification of an induction machine with regard to dependencies on saturation. IEEE Transactions on Industry Applications, 29(6): 1135-1140, 1993
28.
A. Trentin, P. Zanchetta, C. Gerada, J. Clare, and P. W. Wheeler. Optimized commissioning method for enhanced vector control of high-power induction motor drives. IEEE Transactions on Industrial Electronics, 56(5): 1708-1717, 2009
29.
C. Wang, D. W. Novotny, and T. A. Lipo. An automated rotor time constant measurement system for indirect field-oriented drives. IEEE Transactions on Industry Applications, 24(1): 151-159, 1988
30.
H. A. Toliyat, E. Levi, and M. Raina. A review of RFO induction motor parameter estimation techniques. IEEE Transactions on Energy Conversion, 18(2): 271-283, 2003
Contact IEEE to Subscribe

References

References is not available for this document.