Abstract:
To solve the vertex cover problem in an agent-based and distributed networking systems utilizing local information, we treat each vertex as an intelligent rational agent ...Show MoreMetadata
Abstract:
To solve the vertex cover problem in an agent-based and distributed networking systems utilizing local information, we treat each vertex as an intelligent rational agent rather than an inanimate one and provide a spatial-snowdrift-game-based optimization framework to vertex cover of networks. We analyze the inherent relation between the snowdrift game and the vertex cover: Strict Nash equilibriums of the spatial snowdrift game are the intermediate states between vertex-covered and minimal-vertex-covered states. Such equilibriums are obtained by employing the memory-based best response update rule. We also find that a better approximate solution in terms of the minimal vertex cover will be achieved by increasing the individuals' memory length, because such a process optimizes the individuals' strategies and helps them convert from bad equilibriums into better ones. Our findings pave a new way to solve the vertex cover problem from the perspective of agent-based self-organized optimization.
Published in: IEEE Transactions on Cybernetics ( Volume: 43, Issue: 3, June 2013)
References is not available for this document.
Select All
1.
D. S. Hochbaum, "Approximation algorithms for the set covering and vertex cover problmes", SIAM J. Comput., vol. 11, no. 3, pp. 555-556, Aug. 1982.
2.
B. Monien and E. Speckenmeyer, "Ramsey numbers and an approximation algorithm for the vertex cover problem", Acta Inform., vol. 22, no. 1, pp. 115-123, Apr. 1985.
3.
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, NY, Mineola:Dover, 1998.
4.
S. Khuri and T. Back, "An evolutionary heuristic for the minimum vertex cover problem", Proc. Genetic Algorithms Framework Evol. Comput., pp. 86-90, 1994.
5.
P. S. Oliveto, J. He and X. Yao, "Analysis of population-based evolutionary algorithms for the vertex cover problem", Proc. IEEE World Congr. Evol. Comput., pp. 1563-1570, 2008.
6.
H. Huo and J. Xu, "New hybrid genetic algorithm for vertex cover problems", J. Syst. Eng. Electron., vol. 14, no. 4, pp. 90-94, Dec. 2003.
7.
M. D. Smith and P. Mazumder, "Generation of minimal vertex covers for row column allocation in self-repairable arrays", IEEE Trans. Comput., vol. 45, no. 1, pp. 109-115, Jan. 1996.
8.
P. S. Oliveto, J. He and X. Yao, " Analysis of the (1 + 1)-EA for finding approximate solutions to vertex cover problems ", IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 1006-1029, Oct. 2009.
9.
Q. Z. Fang and L. Kong, "Core stability of vertex cover games", Proc. Internet Netw. Econom., vol. 4858, pp. 482-490, 2007.
10.
J. Cardinal and M. Hoefer, "Selfish service installation in networks", Proc. Internet Netw. Econom., vol. 4286, pp. 174-185, 2006.
11.
X. T. Deng, T. Ibaraki and H. Nagamochi, "Algorithmic aspects of the core of combinatorial optimization games", Math. Oper. Res., vol. 24, no. 3, pp. 751-766, Aug. 1999.
12.
M. Gairing, "Covering games: Approximation through non-cooperation", Proc. Internet Netw. Econom., vol. 5929, pp. 184-195, 2009.
13.
J. Cardinal and M. Hoefer, "Non-cooperative facility location and covering games", Theor. Comput. Sci., vol. 411, no. 16–18, pp. 1855-1876, Mar. 2010.
14.
X. Y. Li, P. J. Wan and O. Frieder, "Coverage in wireless ad hoc sensor networks", IEEE Trans. Comput., vol. 52, no. 6, pp. 753-763, Jun. 2003.
15.
S. K. Ng and W. K. G. Seah, "Game-theoretic approach for improving cooperation in wireless multihop networks", IEEE Trans. Syst. Man Cybern. B Cybern., vol. 40, no. 3, pp. 559-574, Jun. 2010.
16.
D. Gu, "A game theory approach to target tracking in sensor networks", IEEE Trans. Syst. Man Cybern. B Cybern., vol. 41, no. 1, pp. 2-13, Feb. 2011.
17.
M. Safar, M. Taha and S. Habib, "Modeling the communication problem in wireless sensor networks as a vertex cover", Proc. IEEE Int. Conf. Comput. Syst. Appl., pp. 592-598, 2007.
18.
J. Gore, H. Youk and A. van Oudenaarden, "Snowdrift game dynamics and facultative cheating in yeast", Nature, vol. 459, no. 7244, pp. 253-256, May 2009.
19.
R. Kummerli, C. Colliard, N. Fiechter, B. Petitpierre, F. Russier and L. Keller, "Human cooperation in social dilemmas: Comparing the snowdrift game with the prisoners dilemma", Proc. R. Soc. B Biol. Sci., vol. 274, no. 1628, pp. 2965-2970, Dec. 2007.
20.
C. Hauert and M. Doebeli, "Spatial structure often inhibits the evolution of cooperation in the snowdrift game", Nature, vol. 428, no. 6983, pp. 643-646, Apr. 2004.
21.
G. W. Greenwood, "Enhanced cooperation in the n-person iterated snowdrift game through tag mediation", Proc. IEEE Conf. Comput. Intell. Games, pp. 1-8, 2011.
22.
S. Cho and T. Nguyen, "Modeling and dynamics analysis of P2P networks based on evolutionary games", Proc. 1st Int. Conf. Adv. P2P Syst., pp. 34-38, 2009.
23.
G. Szabó and G. Fath, "Evolutionary games on graphs", Phys. Rep., vol. 446, no. 4–6, pp. 97-216, Jul. 2007.
24.
M. Perc and A. Szolnoki, "Coevolutionary games—A mini review", Biosystems, vol. 99, no. 2, pp. 109-125, Feb. 2009.
25.
D. J. Watts and S. H. Strogatz, "Collective dynamics of ‘small-world’ networks", Nature, vol. 393, no. 6684, pp. 440-442, Jun. 1998.
26.
A. L. Barabási and R. Albert, "Emergence of scaling in random networks", Science, vol. 286, no. 5439, pp. 509-512, Oct. 1999.
27.
M. E. J. Newman, "The structure and function of complex networks", SIAM Rev., vol. 45, no. 2, pp. 167-256, Mar. 2003.
28.
M. A. Nowak and R. M. May, "Evolutionary games and spatial chaos", Nature, vol. 359, no. 6398, pp. 826-829, Oct. 1992.
29.
F. C. Santos and J. M. Pacheco, "Scale-free networks provide a unifying framework for the emergence of cooperation", Phys. Rev. Lett., vol. 95, no. 9, pp. 098104, Aug. 2005.
30.
M. A. Nowak, "Five rules for the evolution of cooperation", Science, vol. 314, no. 5805, pp. 1560-1563, Dec. 2006.