Loading web-font TeX/Main/Regular
Investigation of Black Box Model for Erbium-Doped Fiber Amplifiers in Space Radiation Environment | IEEE Journals & Magazine | IEEE Xplore

Investigation of Black Box Model for Erbium-Doped Fiber Amplifiers in Space Radiation Environment


Abstract:

A black box model (BBM) of common environment is introduced to characterize the gain of erbium-doped fiber amplifier (EDFA) for any wavelength in the range of 1540–1560 n...Show More

Abstract:

A black box model (BBM) of common environment is introduced to characterize the gain of erbium-doped fiber amplifier (EDFA) for any wavelength in the range of 1540–1560 nm in the radiation environment. Two erbium-doped fibers with different concentrations have been radiated to confirm the validity of the BBM. Using the method of BBM, the less measured parameters can overcome the restriction of the measured time in radiation environment. Therefore, that affords a new way to characterize the gain deterioration characteristic of EDFA in multiwavelength in radiation environment.
Published in: Journal of Lightwave Technology ( Volume: 30, Issue: 23, December 2012)
Page(s): 3667 - 3671
Date of Publication: 18 October 2012

ISSN Information:

References is not available for this document.

I. Introduction

With the development of several important space optical communication programs which are carried out by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) [1]–[4], many key ground optical communication devices and techniques have been introduced to the field of satellite optical communication. In this way, lots of valuable achievements have been obtained in recent years. In 1995, Jet Propulsion Laboratory (JPL, Pasadena, CA) and NICT (formerly CRL, Japan) successfully established an optical communication link between the Japanese ETS-VI satellite and the Table Mountain Facility near the JPL [5]. In 2001, ESA first carried out the transmission of an image at 50 Mb/s for low earth orbit—geostationary earth orbit (LEO-GEO) intersatellite link (ISL) applications [6]. In 2005, the first bidirectional laser communications demonstration between Optical Interorbit Communications Engineering Test Satellite (OICETS, Japan) and Advanced Relay Technology Mission Satellite (ARTEMIS, ESA) was successfully conducted with a return link of 50 Mb/s and a forward link of 2 Mb/s [7].

Select All
1.
J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, et al., " The space technology research vehicle (STRV) {-}2 Program ", Proc. SPIE, vol. 4136, pp. 36-47, 2000.
2.
A. Biswas, M. W. Wright, J. Kovalik and S. Piazzolla, "Uplink beacon laser for Marslaser communication demonstration (MLCD)", Proc. SPIE, vol. 5712, pp. 93-100, 2005.
3.
B. Laurent and O. Duchmann, "The Silex Project: The firstEuropean optical intersatellite link experiment", Proc. SPIE, vol. 1417, pp. 2-12, 1991.
4.
M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera and G. Oppenhauser, "Preliminary results of the in-orbit test of ARTEMIS withthe optical ground station", Proc. SPIE, vol. 4635, pp. 38-49, 2002.
5.
M. Jeganathan, M. Toyoshimaa, K. Wilson, J. Jamesb, G. Xuc and J. Lesh, "Data analysis results from the GOLD experiments", Proc. SPIE, vol. 2990, pp. 70-81, 1997.
6.
T. T. Nielsen, G. Oppenhaeuser, B. Laurent and G. Planche, "In-orbit test results of theoptical intersatellite link SILEX. A milestone in satellite communication", Proc. 53rd Int. Astron. Congr., pp. 1-11, 2002.
7.
T. Jono, Y. Takayama, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, et al., "OICETS on-orbit laser communication experiments", Proc. SPIE, vol. 6105, pp. 13-23, 2006.
8.
M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. Reyes, A. Alonso, et al., "Ground-to-satellite optical link tests between Japaneselaser communications terminal and European geostationary satellite ARTEMIS", Proc. SPIE, vol. 5338, pp. 1-15, 2004.
9.
M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, et al., "Ground-to-OICETS laser communication experiments", Proc. SPIE, vol. 6304, pp. 1-8, 2006.
10.
J. Ma, M. Li, L. Y. Tan, Y. P. Zhou, S. Y. Yu and Q. W. Ran, "Experimental investigation of radiation effect on erbium-ytterbiumco-doped fiber amplifier for space optical communication in low-dose radiationenvironment", Opt. Exp., vol. 17, no. 18, pp. 15571-15577, 2009.
11.
V. M. N. Passaro and M. N. Armenise, "Neutron and gamma radiationeffects in proton exchanged optical waveguides", Opt. Exp., vol. 10, no. 18, pp. 960-964, 2002.
12.
D. M. Boroson, A. Biswas and B. L. Edwards, "MLCD: Overview of NASA's marslaser communications demonstration system", Proc. SPIE, vol. 5338, pp. 16-28, 2004.
13.
H. Hemmati, A. Biswas and D. M. Boroson, "30-dB data rate improvementfor interplanetary laser communication", Proc. SPIE, vol. 6877, pp. 687707-1-687707-8, 2008.
14.
O. Berne, M. Caussanel and O. Gilard, "A model for the predictionof EDFA gain in a space radiation environment", IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2227-2229, Oct. 2004.
15.
D. L. Griscom, M. E. Gingerich and E. J. Friebele, "Radiation-induced defects inglasses: origin of power-law dependence of concentration on dose", Phys. Rev. Lett., vol. 71, no. 7, pp. 1019-1022, 1993.
16.
K. Miller, T. O. Connor and R. Kaliski, "Gamma-ray induced effects inerbium-doped fiber optic amplifiers", Proc. SPIE, vol. 3440, pp. 16-23, 1998.
17.
T. S. Rose, D. Gunn and G. C. Valley, "Gamma and proton radiation effects in erbium-dopedfiber amplifiers: Active and passive measurements", J. Lightw. Technol., vol. 19, no. 12, pp. 1918-1923, Dec. 2001.
18.
A. Gusarov, M. Van Uffelen, M. Hotoleanu, H. Thienpont and F. Berghmans, "Radiation sensitivity of EDFAsbased on highly Er-doped fibers", J. Lightw. Technol., vol. 27, no. 11, pp. 1540-1545, Jun. 2009.
19.
S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, et al., "Radiation hardening techniques for Er/Ybdoped optical fibers and amplifiers for space application", Opt. Exp., vol. 20, pp. 8457-8465, 2012.
20.
J. Thomas, M. Myara, L. Troussellier, E. Burov, A. Pastouret, D. Boivin, et al., "Radiation-resistanterbium-doped-nanoparticles optical fiber for space applications", Opt. Exp., vol. 20, pp. 2435-2444, 2012.
21.
C. R. Giles and E. Desurvire, "Modeling of erbium-doped fiberamplifiers", J. Lightw. Technol., vol. 9, no. 2, pp. 271-283, Feb. 1991.
22.
R. H. West and A. P. Lenham, "Characteristics of light inducedannealing in irradiated optical fibres", Electron. Lett., vol. 18, no. 11, pp. 483-484, 1982.
23.
X. P. Zhang and A. Mitchell, "A simple black box model forerbium-doped fiber amplifiers", IEEE Photon. Technol. Lett., vol. 12, no. 1, pp. 28-30, Jan. 2000.
24.
D. Bonnedal, "EDFA gain described with ablack box model", Proc. IEEE/LEOS Opt. Amplifier Appl., vol. 16, pp. 215-216, 1996.
25.
J. Burgmeier, A. Cords, R. Marz, C. Schaffer and B. Stummer, "A black box model of EDFA's operating in WDM systems", J. Lightw. Technol., vol. 16, no. 7, pp. 1271-1275, Jul. 1998.

Contact IEEE to Subscribe

References

References is not available for this document.