Loading [MathJax]/extensions/MathMenu.js
An Adapted Optical Flow Algorithm for Robust Quantification of Cardiac Wall Motion From Standard Cine-MR Examinations | IEEE Journals & Magazine | IEEE Xplore

An Adapted Optical Flow Algorithm for Robust Quantification of Cardiac Wall Motion From Standard Cine-MR Examinations


Abstract:

This paper presents a method for local myocardial motion estimation from a conventional steady-state free precession cine-MRI sequence using a modified phase-based optica...Show More

Abstract:

This paper presents a method for local myocardial motion estimation from a conventional steady-state free precession cine-MRI sequence using a modified phase-based optical flow (OF) technique. Initially, the technique was tested on synthetic images to evaluate its robustness with regards to Rician noise and to brightness variations. The method was then applied to cardiac images acquired on 11 healthy subjects. Myocardial velocity is measured in centimeter per second in each studied pixel and visualized as colored vectors superimposed on MRI images. The estimated phase-based OF results were compared with a reference OF method and gave similar results on synthetic images, i.e., without a significant difference of the mean angular error. Applied on cine-MRI of normal hearts, the calculated velocities from short-axis images concord with values obtained in the literature. The advantage of the presented method is its robustness with respect to Rician noise and to brightness changes often observed in cine-MRI sequences, and especially with the through-plane movement of the heart. Motion assessment using our method on cine-MR images gives promising results on motion estimation on a pixel-by-pixel basis, leading to a regional measurement of the time-velocity course of myocardial displacement in different segments of the heart wall.
Published in: IEEE Transactions on Information Technology in Biomedicine ( Volume: 16, Issue: 5, September 2012)
Page(s): 859 - 868
Date of Publication: 14 June 2012

ISSN Information:

PubMed ID: 22717523
References is not available for this document.

I. Introduction

Cardiac MRI is a noninvasive technique allowing the study of the cardiac function. ECG-gated steady-state free precession (SSFP) cine-MRI sequences have the advantage of providing detailed morphological information coupled with an adequate temporal resolution and an excellent contrast between structures. These sequences are widely used in clinical practice for the study of myocardial function [1] through the estimation of ejection fraction (EF) and myocardial thickness.

Select All
1.
F. H. Epstein, "MRI of left ventricular function", J. Nucl. Cardiol., vol. 14, no. 5, pp. 729-744, 2007.
2.
D. J. Pennell, U. P. Sechtem, C. B. Higgins, W. J. Manning, G. M. Pohost, F. E. Rademakers, et al., "Clinical indications for cardiovascular magnetic resonance (CMR): Consensus panel report", Eur. Heart J., vol. 25, no. 21, pp. 1940-1965, Nov. 2004.
3.
X. Papademetris, A. J. Sinusas, D. P. Dione, R. T. Constable and J. S. Duncan, "Estimation of 3-D left ventricular deformation from medical images using biomechanical models", IEEE Trans. Med. Imag., vol. 21, no. 7, pp. 786-800, Jul. 2002.
4.
J. L. Barron, D. J. Fleet and S. S. Beauchemin, "Performance of optical flow techniques", Int. J. Comput. Vis., vol. 12, pp. 43-77, 1994.
5.
D. J. Fleet and A. D. Jepson, "Computation of component image velocity from local phase information", Int. J. Comput. Vis., vol. 5, pp. 77-104, 1990.
6.
S. C. Amartur and H. J. Vesselle, "A new approach to study cardiac motion: The optical flow of cine MR images", Magn. Reson. Med., vol. 29, no. 1, pp. 59-67, Jan. 1993.
7.
A. A. Amini and J. Prince, Measurement of Cardiac Deformation From MRI: Physical and Mathematical Models, Dordrecht, The Netherlands:Kluwer, 2001.
8.
J. L. Barron, "Experience with 3D optical flow on gated MRI cardiac datasets", Proc. 1st Can. Conf. Comput. Robot Vis., pp. 370-377, 2004.
9.
T. Arts, F. W. Prinzen, T. Delhaas, J. R. Milles, A. C. Rossi and P. Clarysse, "Mapping displacement and deformation of the heart with local sine-wave modeling", IEEE Trans. Med. Imag., vol. 29, no. 5, pp. 1114-1123, May 2010.
10.
L. Dougherty, J. C. Asmuth, A. S. Blom, L. Axel and R. Kumar, "Validation of an optical flow method for tag displacement estimation", IEEE Trans. Med. Imag., vol. 18, no. 4, pp. 359-363, Apr. 1999.
11.
J. L. Prince and E. R. McVeigh, "Motion estimation from tagged MR image sequences", IEEE Trans. Med. Imag., vol. 11, no. 2, pp. 238-249, Jun. 1992.
12.
S. M. Song and R. M. Leahy, "Computation of 3-D velocity fields from 3-D cine CT images of a human heart", IEEE Trans. Med. Imag., vol. 10, no. 3, pp. 295-306, Sep. 1991.
13.
C. Bussadori, A. Moreo, M. Di Donato, B. De Chiara, D. Negura, E. DallAglio, et al., "A new 2D-based method for myocardial velocity strain and strain rate quantification in a normal adult and paediatric population: Assessment of reference values", Cardiovasc. Ultrasound, vol. 7, no. 8, pp. 1-11, Feb. 2009.
14.
M. Shling, M. Arigovindan, C. Jansen, P. Hunziker and M. Unser, "Myocardial motion analysis from B-mode echocardiograms", IEEE Trans. Image Process., vol. 14, no. 4, pp. 525-536, Apr. 2005.
15.
K. Miyatake, M. Yamagishi, N. Tanaka, M. Uematsu, N. Yamazaki, Y. Mine, et al., "New method for evaluating left ventricular wall motion by color-coded tissue Doppler imaging: In vitro and in vivo studies", J. Amer. Coll. Cardiol., vol. 25, no. 3, pp. 717-724, Mar. 1995.
16.
S. P. Karwatowski, S. J. D. Brecker, G. Z. Yang, D. N. Firmin, M. St John Sutton and S. R. Underwood, "A comparison of left ventricular myocardial velocity in diastole measured by magnetic resonance imaging and left ventricular filling measured by Doppler echocardiography", Eur. Heart J., vol. 17, no. 5, pp. 795-802, May 1996.
17.
H. Liu, T.-H. Hong, M. Herman and R. Chellappa, "Accuracy versus efficiency trade-offs in optical flow algorithms", Comp. Vis. Image Understanding, vol. 72, no. 3, pp. 271-286, Dec. 1998.
18.
B. K. P. Horn and B. G. Schunck, "Determining optical flow", Artif. Intell., vol. 17, pp. 185-203, 1981.
19.
B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision", Proc. 7th Int. Joint Conf. Artif. Intell., pp. 674-679, 1981.
20.
D. J. Heeger, "Optical flow using spatiotemporal filters", Proc. 1st Int. Conf. Comput. Vis., pp. 181-190, 1987.
21.
E. Bruno and D. Pellerin, "Robust motion estimation using spatial Gabor-like filters", Signal Process., vol. 82, pp. 297-309, 2002.
22.
A. Chhikian, "Optimal algorithms for low-pass and Laplacian image pyramids computation", Traitement du Signal, vol. 9, pp. 297-307, 1992.
23.
H. Gudbjartsson and S. Patz, "The Rician distribution of noisy MRI data", Magn. Reson. Med., vol. 34, no. 6, pp. 910-914, Dec. 1995.
24.
O. Dietrich, J. G. Raya, S. B. Reeder, M. Ingrisch, M. F. Reiser and S. O. Schoenberg, "Influence of multichannel combination parallel imaging and other reconstruction techniques on MRI noise characteristics", Magn. Reson. Imaging, vol. 26, no. 6, pp. 754-762, Jul. 2008.
25.
G. McGibney and M. R. Smith, "An unbiased signal-to-noise ratio measure for magnetic resonance images", Med. Phys., vol. 20, no. 4, pp. 1077-1078, Jul./Aug. 1993.
26.
T. Arts, W. C. Hunter, A. Douglas, A. M. Muijtjens and R. S. Reneman, "Description of the deformation of the left ventricle by a kinematic model", J. Biomech., vol. 25, pp. 1119-1127, 1992.
27.
E. Waks, J. Prince and A. Douglas, "Cardiac motion simulator for tagged MRI", Proc. Workshop Math. Methods Biomed. Image Anal., pp. 182-191, 1996.
28.
D. J. Fleet and K. Langley, "Recursive filters for optical flow", IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 1, pp. 61-67, Jan. 1995.
29.
T. Arts, F. W. Prinzen, T. Delhaas, J. R. Milles, A. C. Rossi and P. Clarysse, "Mapping displacement and deformation of the heart with local sine-wave modeling", IEEE Trans. Med. Imag., vol. 29, no. 5, pp. 1114-1123, May 2010.
30.
E. R. McVeigh, "MRI of myocardial function: Motion tracking techniques", Magn. Reson. Imag., vol. 14, no. 2, pp. 137-150, 1996.

Contact IEEE to Subscribe

References

References is not available for this document.