Abstract:
Quantum-dot (QD) lasers provide superior lasing characteristics compared to quantum-well (QW) and QW wire lasers due to their delta like density of states. Record thresho...Show MoreMetadata
Abstract:
Quantum-dot (QD) lasers provide superior lasing characteristics compared to quantum-well (QW) and QW wire lasers due to their delta like density of states. Record threshold current densities of 40 A/spl middot/cm/sup -2/ at 77 K and of 62 A/spl middot/cm/sup -2/ at 300 K are obtained while a characteristic temperature of 385 K is maintained up to 300 K. The internal quantum efficiency approaches values of /spl sim/80 %. Currently, operating QD lasers show broad-gain spectra with full-width at half-maximum (FWHM) up to /spl sim/50 meV, ultrahigh material gain of /spl sim/10/sup 5/ cm/sup -1/, differential gain of /spl sim/10/sup -13/ cm/sup 2/ and strong nonlinear gain effects with a gain compression coefficient of /spl sim/10/sup -16/ cm/sup 3/. The modulation bandwidth is limited by nonlinear gain effects but can be increased by careful choice of the energy difference between QD and barrier states. The linewidth enhancement factor is /spl sim/0.5. The InGaAs-GaAs QD emission can be tuned between 0.95 /spl mu/m and 1.37 /spl mu/m at 300 K.
Published in: IEEE Journal of Selected Topics in Quantum Electronics ( Volume: 3, Issue: 2, April 1997)
DOI: 10.1109/2944.605656
References is not available for this document.
Select All
1.
Y. Arakawa and H. Sakaki, "Multidimensional quantum well lasers and temperature dependence of its threshold current", Appl. Phys. Lett., vol. 40, pp. 939-941, June 1982.
2.
M. Asada, Y. Miyamoto and Y. Suematsu, "Gain and the threshold of three-dimensional quantum-box lasers", IEEE J. Quantum Electron., vol. QE-22, pp. 1915-1921, Sept. 1986.
3.
K. J. Vahala, "Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain", IEEE J. Quantum Electron., vol. 24, pp. 523-530, Mar. 1988.
4.
M. Grundmann, J. Christen, N. N. Ledentsov, J. Bo¨hrer, D. Bimberg, S. S. Ruvimov, et al., "Ultranarrow luminescence lines from single quantum dots", Phys. Rev. Lett., vol. 74, pp. 4043-4046, May 1995.
5.
H. Benisty, C. M. Sotomayor-Torres and C. Weisbuch, "Intrinsic mechanism for the poor luminescence properties of quantum-box systems", Phys. Rev. B, vol. 44, pp. 10945-10948, Nov. 1991.
6.
M. Grundmann, O. Stier and D. Bimberg, "InAs/GaAs pyramidal quantum dots: Strain distribution optical phonons and electronic structure", Phys. Rev. B, vol. 52, pp. 11969-11980, Oct. 1995.
7.
R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, et al., "Multiphononrelaxation processes in self-organized InAs/GaAs quantum dots", Appl. Phys. Lett., vol. 68, pp. 361-363, Jan. 1996.
8.
M. Grundmann and D. Bimberg, "Gain and threshold of quantum dot lasers: Theory and comparison to experiments", Jpn. J. Appl. Phys., vol. 36, pp. 36-42, June 1997.
9.
M. Grundmann and D. Bimberg, "Theory of random population for quantum dots", Phys. Rev. B., vol. 55, pp. 9740-9745, Apr. 1997.
10.
H. Hirayama, K. Matsunaga, M. Asada and Y. Suematsu, " Lasing action of Ga \$_{0.67}\$ In \$_{0.33}\$ As/GaInAsP/InP tensile-strained quantum-box lasers ", Electron. Lett., vol. 30, pp. 142-143, Jan. 1994.
11.
N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, et al., " Low threshold large \$T_0\$ injection laser emission from (InGa)As quantum dots ", Electron. Lett., vol. 30, pp. 1416-1417, Aug. 1994.
12.
D. Bimberg, N. N. Ledentsov, M. Grundmann, N. Kirstaedter, O. G. Schmidt, M. H. Mao, et al., "InAs-GaAs quantum pyramid lasers: In situ growth radiative lifetimes and polarization properties", Jpn. J. Appl. Phys., vol. 35, pp. 1311-1319, Feb. 1996.
13.
N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bo¨hrer, O. G. Schmidt, et al., "Direct formation of vertically coupled quatum dots in stranski-krastanow growth", Phys. Rev. B, vol. 54, pp. 8743-8750, Sept. 1996.
14.
A. Moritz, R. Wirth, A. Hangleiter, A. Kurtenbach and K. Eberl, "Optical gain and lasing in self-organized InP/GaInP quantum dots", Appl. Phys. Lett., vol. 69, pp. 212-214, July 1996.
15.
F. Hatami, N. N. Ledentsov, M. Grundmann, J. Bo¨hrer, F. Heinrichsdorff, M. Beer, et al., "Radiative recombination in type-II GaSb/GaAs quantum dots", Appl. Phys. Lett., vol. 67, pp. 656-658, July 1995.
16.
E. R. Glaser, B. R. Benett, B. V. Shanabrook and R. Magno, "Photoluminescence studies of self-assembled InSb GaSb and AlSb quantum dot heterostructures", Appl. Phys. Lett., vol. 68, pp. 3614-3616, June 1996.
17.
J. Temmyo, E. Kuramochi, M. Sugo, T. Nishiya, R. No¨tzel and T. Tamamura, "Quantum disk lasers with self-organized dot-like active regions", Proc. Lasers and Electro-Opt. Soc. (LEOS'95), vol. 1, pp. 77-78, 1995.
18.
H. Shoji, K. Mukai, N. Ohtsuka, M. Sugawara, T. Uchida and H. Ishikawa, " Lasing at three-dimensionally quantum-confined sublevel of self-organized In \$_{0.5}\$ Ga \$_{0.5}\$ As quantum dots by current injection ", IEEE Photon. Technol. Lett., vol. 7, pp. 1385-1387, Dec. 1995.
19.
R. Mirin, A. Gossard and J. Bowers, "Room temperature lasing from InGaAs quantum dots", Proc. Int. Conf. Quantum Devices and Circuit, 1996.
20.
K. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris and J. Phillips, " Room temperature operation of In \$_{0.4}\$ Ga \$_{0.6}\$ As/GaAs self-organized quantum dot lasers ", Electron. Lett., vol. 32, pp. 1374-1375, July 1996.
21.
F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, et al., "Room temperature lasing from vertically stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition", Appl. Phys. Lett..
22.
N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, et al., "Gain and differential gain of single layer InAs/GaAs-quantum dot injection lasers", Appl. Phys. Lett., vol. 69, pp. 1226-1228, Aug. 1996.
23.
O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M.-H. Mao, D. Bimberg, V. M. Ustinov, et al., "Prevention of gain saturation by multi-layer quantum dot lasers", Electron. Lett., vol. 32, pp. 1302-1303, July 1996.
24.
H. Nakayama and Y. Arakawa, "Calcuation of lasing characteristics in quantum dot lasers considering interaction of electrons with LO phonons", Proc. 15th IEEE Int. Semiconductor Laser Conf., pp. 41-42, 1996.
25.
E. H. Bo¨ttcher, N. Kirstadter, M. Grundmann and D. Bimberg, "Nonspectroscopic approach to the determination of the chemical potential and band-gap renormalization in quantum wells", Phys. Rev. B, vol. 45, pp. 8535-8541, Apr. 1992.
26.
"Ultalow threshold quantum well lasers", Quantum Well Lasers, pp. 189-215, 1993.
27.
N. Chand, E. E. Becker, J. P. van der Ziel, S. N. G. Chu and N. K. Dutta, " Excellent uniformity and very low ( \${<}\$ 50 Acm \$^{-2}\$ ) threshold current density strained quantum well diode lasers on GaAs substrate ", Appl. Phys. Lett., vol. 58, pp. 1704-1706, Apr. 1991.
28.
Zh. I. Alferov, N. Yu. Gordeev, S. V. Zaitsev, P. S. Kop'ev, I. V. Kochnev, V. V. Komin, et al., "A low threshold injection heterojunction laser based on quantum dots produced by gase-phase epitaxy from organometallic compounds", Semiconductors, vol. 30, pp. 197-200, Feb. 1996.
29.
N. N. Ledentsov, "Ordered arrays of quantum dots", Proc. 23th Int. Conf. Semiconductors (ICPS'96), pp. 19-25, 1996.
30.
V. M. Ustinov, A. Yu. Egorov, A. R. Kovsh, A. E. Zhukov, M. V. Maximov, A. F. Tsatsulnikov, et al., "Low-threshold injection lasers based on vertically coupled quantum dots", Proc. 9th Int. Conf. MBE, 1996.