Loading [MathJax]/extensions/MathMenu.js
Rate-Dependent Hysteresis Modeling and Control of a Piezostage Using Online Support Vector Machine and Relevance Vector Machine | IEEE Journals & Magazine | IEEE Xplore

Rate-Dependent Hysteresis Modeling and Control of a Piezostage Using Online Support Vector Machine and Relevance Vector Machine


Abstract:

Hysteresis nonlinearity degrades the positioning accuracy of a piezostage and requires a suppression for precision micro-/nanopositioning applications. This paper propose...Show More

Abstract:

Hysteresis nonlinearity degrades the positioning accuracy of a piezostage and requires a suppression for precision micro-/nanopositioning applications. This paper proposes two new approaches to modeling and compensating the rate-dependent hysteresis of a piezostage driven by piezoelectric stack actuators. By formulating the hysteresis modeling as an online nonlinear regression problem, online least squares support vector machine (SVM) (LS-SVM) and online relevance vector machine (RVM) models are proposed to capture the hysteretic behavior. Both hysteresis models are capable of updating continually with subsequent samples. After a comparative study on modeling performances, an inverse model-based feedforward combined with proportional-integral-derivative feedback control is presented to alleviate the hysteresis effect. Experimental results show that the LS-SVM model-based control scheme is over 86% more accurate than the RVM model-based one in the motion tracking task, whereas the latter is 14 times faster than the former in terms of updating time. Moreover, both LS-SVM and RVM model-based control schemes can suppress the rate-dependent hysteresis to a negligible level, which validates the feasibility and effectiveness of the proposed approaches.
Published in: IEEE Transactions on Industrial Electronics ( Volume: 59, Issue: 4, April 2012)
Page(s): 1988 - 2001
Date of Publication: 25 August 2011

ISSN Information:

References is not available for this document.

I. Introduction

A piezostage refers to a micro-/nanopositioning stage actuated by piezoelectric stack actuators (PSAs). In comparison with other types of actuators [1], PSA is capable of positioning with subnanometer resolution, rapid response, and large blocking force. Hence, it is widely adopted in diverse micro-/nanopositioning applications such as scanning probe microscopy [2], [3] and biological manipulation [4], [5]. Nevertheless, PSA introduces nonlinearity into the system due to the piezoelectric hysteresis and creep effects [6]. The hysteresis is embodied as a nonlinear relationship between the input voltage and output displacement and induces a severe open-loop positioning error as high as 10%–15% of the motion range of the positioning system. Therefore, the hysteresis has to be suppressed in high-precision application scenarios [7]–[9].

Select All
1.
M.-Y. Chen, H.-H. Huang and S.-K. Hung, "A new design of a submicropositioner utilizing electromagnetic actuators and flexure mechanism", IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 96-106, Jan. 2010.
2.
N. Bonnail, D. Tonneau, F. Jandard, G.-A. Capolino and H. Dallaporta, "Variable structure control of a piezoelectric actuator for a scanning tunneling microscope", IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 354-363, Apr. 2004.
3.
K. K. Leang, Q. Zou and S. Devasia, "Feedforward control of piezoactuators in atomic force microscope systems: Inversion-based compensation for dynamics and hysteresis", IEEE Control Syst. Mag., vol. 29, no. 1, pp. 70-82, Feb. 2009.
4.
Y. Zhang, K. K. Tan and S. Huang, "Vision-servo system for automated cell injection", IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 231-238, Jan. 2009.
5.
A. A. Ramadan, T. Takubo, Y. Mae, K. Oohara and T. Arai, "Developmental process of a chopstick-like hybrid-structure two-fingered micromanipulator hand for 3-D manipulation of microscopic objects", IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1121-1135, Apr. 2009.
6.
H.-J. Shieh, F.-J. Lin, P.-K. Huang and L.-T. Teng, "Adaptive displacement control with hysteresis modeling for piezoactuated positioning mechanism", IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 905-914, Jun. 2006.
7.
Y. K. Yong, S. Aphale and S. O. R. Moheimani, "Design identification and control of a flexure-based XY stage for fast nanoscale positioning", IEEE Trans. Nanotechnol., vol. 8, no. 1, pp. 46-54, Jan. 2009.
8.
H. C. Liaw and B. Shirinzadeh, "Robust adaptive constrained motion tracking control of piezo-actuated flexure-based mechanisms for micro/nano manipulation", IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1406-1415, Apr. 2011.
9.
Y. Li and Q. Xu, "A novel piezoactuated XY stage with parallel decoupled and stacked flexure structure for micro/nano positioning", IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3601-3615, Aug. 2011.
10.
J. Minase, T.-F. Lu, B. Cazzolato and S. Grainger, "A review supported by experimental results of voltage charge and capacitor insertion method for driving piezoelectric actuators", Precis. Eng., vol. 34, no. 4, pp. 692-700, Oct. 2010.
11.
X. Tan and J. S. Baras, "Adaptive identification and control of hysteresis in smart materials", IEEE Trans. Autom. Control, vol. 50, no. 6, pp. 827-839, Jun. 2005.
12.
M. Ruderman, F. Hoffmann and T. Bertram, "Modeling and identification of elastic robot joints with hysteresis and backlash", IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3840-3847, Oct. 2009.
13.
K. Kuhnen, "Modeling identification and compensation of complex hysteretic nonlinearities: A modified Prandtl–Ishlinskii approach", Eur. J. Control, vol. 9, no. 4, pp. 407-421, 2003.
14.
Y. Li and Q. Xu, "Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator", IEEE Trans. Control Syst. Technol., vol. 18, no. 4, pp. 798-810, Jul. 2010.
15.
C. Ru, Y. Zhang, Y. Sun, Y. Zhong, X. Sun, D. Hoyle, et al., "Automated four-point probe measurement of nanowires inside a scanning electron microscope", IEEE Trans. Nanotechnol., vol. 10, no. 4, pp. 674-681, Jul. 2011.
16.
Y. Yu, Z. Xiao, N. G. Naganathan and R. V. Dukkipati, "Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system", Mech. Mach. Theory, vol. 37, no. 1, pp. 75-89, Jan. 2002.
17.
W. T. Ang, P. K. Khosla and C. N. Riviere, "Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications", IEEE/ASME Trans. Mechatronics, vol. 12, no. 2, pp. 134-142, Apr. 2007.
18.
M. A. Janaideh, S. Rakheja and C.-Y. Su, "Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator", Mechatronics, vol. 19, no. 5, pp. 656-670, Aug. 2009.
19.
M.-S. Tsai and J.-S. Chen, "Robust tracking control of a piezoactuator using a new approximate hysteresis model", Trans. ASME J. Dyn. Syst. Meas. Control, vol. 125, no. 1, pp. 96-102, Mar. 2003.
20.
G. Gu and L. Zhu, "High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model", Rev. Sci. Instrum., vol. 81, no. 8, pp. 085104-1-085104-9, Aug. 2010.
21.
P. Tian, G. Li and R. W. Jones, "Ellipse-based modelling of hysteresis in a smart actuator", Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, pp. 872-877, 2010.
22.
S. Yu, G. Alici, B. Shirinzadeh and J. Smith, "Sliding mode control of a piezoelectric actuator with neural network compensating rate-dependent hysteresis", Proc. IEEE Int. Conf. Robot. Autom., pp. 3641-3645, 2005.
23.
R. Dong, Y. Tan, H. Chen and Y. Xie, "A neural networks based model for rate-dependent hysteresis for piezoelectric actuators", Sens. Actuators A Phys., vol. 143, no. 2, pp. 370-376, 2008.
24.
J. P. Lien, A. York, T. Fang and G. D. Buckner, "Modeling piezoelectric actuators with hysteretic recurrent neural networks", Sens. Actuators A Phys., vol. 163, no. 2, pp. 516-525, Oct. 2010.
25.
J. A. K. Suykens, "Support vector machines: A nonlinear modeling and control perspective", Eur. J. Control, vol. 7, no. 2/3, pp. 311-327, Aug. 2001.
26.
P. K. Wong, L. M. Tam, K. Li and C. M. Vong, "Engine idle-speed system modelling and control optimization using artificial intelligence", Proc. Inst. Mech. Eng. Part D-J. Automobile Eng., vol. 224, no. 1, pp. 55-72, 2010.
27.
P.-K. Wong, C.-M. Vong, L.-M. Tam and K. Li, "Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least-square support vector machines", Int. J. Vehicle Syst. Model. Test., vol. 3, no. 4, pp. 312-330, 2008.
28.
X.-F. Yang, W. Li, Y.-Q. Wang and X.-P. Su, "A multi-loop hysteresis model of piezo actuator based on LS-SVM", Proc. Asian Simul. Conf. and 7th Int. Conf. Syst. Simul. Sci. Comput., pp. 1451-1454, 2008.
29.
W. Lei, J. Mao and Y. Ma, "A new modeling method for nonlinear rate-dependent hysteresis system based on LS-SVM", Proc. 10th Int. Conf. Control Autom. Robot. Vis., pp. 1442-1446, 2008.
30.
H. Tang, S. Xue, R. Chen and T. Sato, "Online weighted LS-SVM for hysteretic structural system identification", Eng. Struct., vol. 28, no. 12, pp. 1728-1735, Oct. 2006.

Contact IEEE to Subscribe

References

References is not available for this document.