Abstract:
With the rise of network science as an exciting interdisciplinary research topic, efficient graph algorithms are in high demand. Problematically, many such algorithms mea...Show MoreMetadata
Abstract:
With the rise of network science as an exciting interdisciplinary research topic, efficient graph algorithms are in high demand. Problematically, many such algorithms measuring important properties of networks have asymptotic lower bounds that are quadratic, cubic, or higher in the number of vertices. For analysis of social networks, transportation networks, communication networks, and a host of others, computation is intractable. In these networks computation in serial fashion requires years or even decades. Fortunately, these same computational problems are often naturally parallel. We present here the design and implementation of a master-worker framework for easily computing such results in these circumstances. The user needs only to supply two small fragments of code describing the fundamental kernel of the computation. The framework automatically divides and distributes the workload and manages completion using an arbitrary number of heterogeneous computational resources. In practice, we have used thousands of machines and observed commensurate speedups. Writing only 31 lines of standard C++ code, we computed betweenness centrality on a network of 4.7M nodes in 25 hours.
Date of Conference: 25-27 July 2011
Date Added to IEEE Xplore: 18 August 2011
ISBN Information:
No metrics found for this document.