I. Introduction
A wide range of problems in robotics as well as in computer-vision involve the minimization of a nonlinear error function that can be represented as a graph. Typical instances are simultaneous localization and mapping (SLAM) [19], [5], [22], [10], [16], [26] or bundle adjustment (BA) [27], [15], [18]. The overall goal in these problems is to find the configuration of parameters or state variables that maximally explain a set of measurements affected by Gaussian noise. For instance, in graph-based SLAM the state variables can be either the positions of the robot in the environment or the location of the landmarks in the map that can be observed with the robot's sensors. Thereby, a measurement depends only on the relative location of two state variables, e.g., an odometry measurement between two consecutive poses depends only on the connected poses. Similarly, in BA or landmark-based SLAM a measurement of a 3D point or landmark depends only on the location of the observed point in the world and the position of the sensor.