Abstract:
Microstrip elements of arbitrary shape are modeled in multilayered media. The Green's function for the multilayered structure is developed in a form useful for efficient ...Show MoreMetadata
Abstract:
Microstrip elements of arbitrary shape are modeled in multilayered media. The Green's function for the multilayered structure is developed in a form useful for efficient computation for interacting microstrip elements, which may be located at any substrate layer and separated by an arbitrarily large distance. This result is of significant value to a variety of applications in wave propagation besides those discussed in this paper. The mixed-potential integral-equation (MPIE) method is developed in the spatial domain. Examples for regularly/arbitrarily shaped geometries in single and multilayered media are presented. These involve the optimization of an open-end microstrip, a radial-stub microstrip, a five-section overlay-gap-coupled filter, and a circular-patch proximity-coupled microstrip antenna. Very good agreement with measurement and other published data is observed.
Published in: IEEE Transactions on Microwave Theory and Techniques ( Volume: 45, Issue: 3, March 1997)
DOI: 10.1109/22.563330
References is not available for this document.
Select All
1.
P. Benedek and P. Silvester, "Equivalent capacitance of microstrip gaps and steps", IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 729-733, Nov. 1972.
2.
P. Silvester and P. Benedek, "Equivalent discontinuities capacitances for right-angle bends T-junctions and crossings", IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp. 341-346, May 1973.
3.
Y. T. Lo, D. Solomon and W. F. Richads, "Theory and experiment on microstrip antennas", IEEE Trans. Antennas Propagat., vol. AP-27, pp. 137-145, Mar. 1979.
4.
K. A. Michalski, "The mixed-potential electric field integral equation for objects in layered media", Arch. Elek. Übertragung., vol. 39, pp. 317-322, Sept./Oct. 1985.
5.
J. R. Mosig and F. E. Gardiol, "A dynamic vector potential theory for three-dimensional microstrip structures", Mitteilungen AGEN, no. 26, pp. 45-52, Nov. 1978.
6.
J. R. Mosig and F. E. Gardiol, "General integral equation formulation for microstrip antennas and scatterers", Proc. Inst. Elect. Eng., vol. 132, no. 7, pp. 424-432, Dec. 1985.
7.
J. R. Mosig, "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation", IEEE Trans. Microwave Theory Tech., vol. 36, pp. 314-323, Feb. 1988.
8.
S. M. Rao, D. R. Wilton and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. AP-30, pp. 409-418, May 1982.
9.
M. J. Tsai, Via hole modeling for multi-layered microstrip circuits, 1993.
10.
K. A. Michalski and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media part II: Implementation and results for contiguous half-spaces", IEEE Trans. Antennas Propagat., vol. 38, pp. 345-352, Mar. 1990.
11.
N. K. Das and D. M. Pozar, "A generalized spectral-domain Green's function for multilayer dielectric substrates with application to multilayer transmission lines", IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 326-335, Mar. 1987.
12.
J. R. James and P. S. Hall, "8", Handbook of Microstrip Antennas., vol. 1, 1989.
13.
K. A. Michalski and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media part I: Theory", IEEE Trans. Antennas Propagat., vol. 38, pp. 335-344, Mar. 1990.
14.
Y. L. Chow, J. J. Yang, D. G. Fang and G. E. Howard, "Closed-form spatial Green's function for the thick substrate", IEEE Trans. Microwave Theory Tech., vol. 39, pp. 588-592, Mar. 1991.
15.
M. I. Aksun and R. Mittra, "Derivation of closed-from Green's functions for a general microstrip geometry", IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2055-2062, Nov. 1992.
16.
W. E. McKinzie, Electromagnetic modeling of conductor-backed aperture antennas and circuits of arbitrary shapes, 1992.
17.
D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak and C. M. Butler, "Potential integrals for uniform and linear source distribution on polygonal and polyhedral domains", IEEE Trans. Antennas Propagat., vol. AP-32, pp. 276-281, Mar. 1984.
18.
W. C. Chew, "2", Waves and Fields in Inhomogeneous Media., 1990.
19.
C. L. Chi and N. G. Alexopoulos, "Radiation by a probe through a substrate", IEEE Trans. Antennas Propagat., vol. AP-34, pp. 1080-1091, Sept. 1986.
20.
C. L. Chi and N. G. Alexopoulos, "An efficient numerical approach for modeling microstrip-type antennas", IEEE Trans. Antennas Propagat., vol. 38, pp. 1399-1404, Sept. 1990.
21.
I. E. Rana and N. G. Alexopoulos, "Current distribution and input impedance of printed dipoles", IEEE Trans. Antennas Propagat., vol. AP-29, pp. 99-105, Jan. 1981.
22.
N. G. Alexopoulos and I. E. Rana, "Mutual impedance computation between printed dipoles", IEEE Trans. Antennas Propagat., vol. AP-29, pp. 106-111, Jan. 1981.
23.
P. B. Katehi and N. G. Alexopoulos, "Real axis integration of Sommerfeld integrals with applications to printed circuit antennas", J. Math. Phys., vol. 24, no. 3, pp. 527-533, Mar. 1983.
24.
D. R. Jackson and N. G. Alexopoulos, "An asymptotic extraction technique for evaluating Sommerfeld-type integrals", IEEE Trans. Antennas Propagat., vol. AP-34, pp. 1467-1470, Dec. 1986.
25.
P. B. Katehi and N. G. Alexopoulos, "Frequency-dependent characteristics of microstrip discontinuities in millimeter-wave integrated circuits", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 1029-1035, Oct. 1985.
26.
P. B. Katehi and N. G. Alexopoulos, "On the modeling of electromagnetically coupled microstrip antennas̵The printed strip dipole", IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1179-1186, Nov. 1984.
27.
N. I. Dib and P. B. Katehi, "The effect of mitering on CPW discontinuities", Euro. Microwave Conf. Dig., pp. 223-228, Sept. 1991.
28.
G. Gronau and I. Wolff, "A simple broad-band device de-embedding method using an automatic network analyzer with time-domain option", IEEE Trans. Microwave Theory Tech., vol. 37, pp. 479-483, Mar. 1989.
29.
F. De Flaviis, M. J. Tsai, S. C. Wu and N. G. Alexopoulos, "Optimization of microstrip open end", IEEE AP-S Int. Symp., vol. 3, pp. 1490-1493, June 1995.
30.
F. Giannini, M. Ruggieri and J. Vrba, "Shunt-connected microstrip radial stubs", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 363-366, Mar. 1986.