Abstract:
Visual feedback can play a crucial role in a dynamic robotic task such as the interception of a moving target. To utilize the feedback effectively, there is a need to dev...Show MoreMetadata
Abstract:
Visual feedback can play a crucial role in a dynamic robotic task such as the interception of a moving target. To utilize the feedback effectively, there is a need to develop robot motion planning techniques that also take into account properties of the sensed data. We propose a motion planning framework that achieves this with the help of a space called the perceptual control manifold (PCM) defined on the product of the robot configuration space and an image-based feature space. We show how the task of intercepting a moving target can be mapped to the PCM, using image feature trajectories of the robot end-effector and the moving target. This leads to the generation of motion plans that satisfy various constraints and optimality criteria derived from the robot kinematics, the control system, and the sensing mechanism. Specific interception tasks are analyzed to illustrate this vision-based planning technique.
Published in: IEEE Transactions on Robotics and Automation ( Volume: 13, Issue: 1, February 1997)
DOI: 10.1109/70.554347
References is not available for this document.
Select All
1.
P. Allen, B. Yoshimi and A. Timcenko, "Real-time visual servoing", Proc. DARPA Image Understanding Workshop, pp. 909-918, 1990.
2.
J. Aloimonos, "Perspective approximations", Image Vis. Comput., vol. 8, no. 3, pp. 179-192, 1990.
3.
W. F. Clocksin, J. S. E. Bromley, P. G. Davey, A. R. Vidler and C. G. Morgan, "An implementation of model-based visual feedback for robot arc welding of thin sheet steel", Int. J. Robot. Res., vol. 4, no. 1, pp. 13-26, 1985.
4.
"Visual control of robot manipulatorsa review", Visual Servoing, pp. 1-32, 1993.
5.
B. R. Donald and J. Jennings, "Sensor interpretation and task-directed planning using perceptual equivalence classes", Proc. IEEE Int. Conf. Robot. Automat., pp. 190-197, Apr. 1991.
6.
M. Erdmann, "Using backprojections for fine motion planning with uncertainty", Int. J. Robot. Res., vol. 5, no. 1, pp. 19-45, 1986.
7.
B. Espiau, F. Chaumette and P. Rives, "A new approach to visual servoing in robotics", IEEE Trans. Robot. Automat., vol. 8, pp. 313-326, 1992.
8.
J. T. Feddema, C. S. George Lee and O. R. Mitchell, "Weighted selection of image features for resolved rate visual feedback control", IEEE Trans. Robot. Automat., vol. 7, pp. 31-47, 1991.
9.
A. Fox and S. Hutchinson, "Exploiting visual constraints in the synthesis of uncertainty-tolerant motion plans", IEEE Trans. Robot. Automat., vol. 11, pp. 56-71, 1995.
10.
Proceedings of the IEEE Workshop on Visual Servoing: Achievements Applications and Open Problems., 1994.
11.
G. D. Hager, "Real-time feature tracking and projective invariance as a basis for hand-eye coordination", Proc. IEEE Conf. Computer Vis. Pattern Recogn., pp. 533-539, 1994.
12.
K. Hashimoto, Visual Servoing., 1993.
13.
J-Y. Herve´, R. Sharma and P. Cucka, "The geometry of visual coordination", Proc. 9th Nat. Conf. AAAI-91, pp. 732-737, July 1991.
14.
W. T. Miller Jr., R. S. Sutton and P. J. Werbos, Neural Networks for Control., 1990.
15.
K. Kant and S. W. Zucker, "Toward efficient trajectory planning: The path-velocity decomposition", Int. J. Robot. Res., vol. 5, no. 3, pp. 72-89, 1986.
16.
P. K. Khosla, C. P. Neuman and F. B. Prinz, "An algorithm for seam tracking applications", Int. J. Robot. Res., vol. 4, no. 1, pp. 27-41, 1985.
18.
J. C. Latombe, A. Lazanas and S. Shekhar, "Robot motion planning with uncertainty in control and sensing", Artific. Intell., vol. 52, pp. 1-47, 1991.
19.
S. M. LaValle and S. A. Hutchinson, "An objective-based stochastic framework for manipulation planning", Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 1994.
20.
T. Lozano-Pe´rez, "Automatic planning of manipulator transfer movements", IEEE Trans. Syst. Man Cybern., vol. 11, Oct. 1981.
21.
T. Lozano-Pe´rez, M. T. Mason and R. H. Taylor, "Automatic synthesis of fine-motion strategies for robots", Int. J. Robot. Res., vol. 4, pp. 3-24, 1985.
22.
N. P. Papanikolopoulos, P. K. Khosla and T. Kanade, "Visual tracking of a moving target by a camera mounted on a robot: A combination of vision and control", IEEE Trans. Robot. Automat., vol. 9, pp. 14-35, Feb. 1993.
23.
R. Sharma, "Active vision for visual servoing: A review", IEEE Workshop Vis. Servoing: Achieve. Applicat. Open Probl., May 1994.
24.
R. Sharma, J-Y. Herve´ and P. Cucka, "Dynamic robot manipulation using visual tracking", Proc. IEEE Int. Conf. Robot. Automat., pp. 1844-1849, May 1992.
25.
R. Sharma and S. Hutchinson, "On the observability of robot motion under active camera control", Proc. IEEE Int. Conf. Robot. Automat., pp. 162-167, May 1994.
26.
R. Sharma and S. Hutchinson, "Optimizing hand/eye configuration for visual-servo systems", Proc. IEEE Int. Conf. Robot. Automat., pp. 172-177, May 1995.
27.
R. Sharma and H. Sutanto, "Unifying configuration space and sensor space for vision-based motion planning", Proc. IEEE Int. Conf. Robot. Automat., pp. 3572-3577, Apr. 1996.
28.
S. B. Skaar, W. H. Brockman and R. Hanson, "Camera-space manipulation", Int. J. Robot. Res., vol. 6, no. 4, pp. 20-32, 1987.
29.
H. Sutanto and R. Sharma, "Global performance evaluation of image features for visual servo control", J. Robot. Syst., vol. 13, no. 4, pp. 243-258, Apr. 1996.
30.
K. A. Tarabanis, P. K. Allen and R. Y. Tsai, "A survey of sensor planning in computer vision", IEEE Trans. Robot. Automat., vol. 11, pp. 86-104, 1995.