Abstract:
We consider coupled systems consisting of a well-posed and strictly proper (hence regular) subsystem and a finite-dimensional subsystem connected in feedback. The externa...Show MoreMetadata
Abstract:
We consider coupled systems consisting of a well-posed and strictly proper (hence regular) subsystem and a finite-dimensional subsystem connected in feedback. The external world interacts with the coupled system via the finite-dimensional part, which receives the external input and sends out the output. Under several assumptions, we derive well-posedness, regularity, exact (or approximate) controllability and exact (or approximate) observability results for such coupled systems.
Published in: IEEE Transactions on Automatic Control ( Volume: 56, Issue: 1, January 2011)
References is not available for this document.
Select All
1.
R. F. Curtain and G. Weiss, "Well-posedness of triples of operators (in the sense of linear systems theory)" in Control and Estimation of Distributed Parameter Systems, Switzerland, Basel:Birkhuser, pp. 41-59, 1989.
2.
R. Dger and E. Zuazua, Wave Propagation Observation and Control in 1-d Flexible Multi-structures, Germany, Berlin:Springer-Verlag, 2006.
3.
B. Z. Guo, "On boundary control of a hybridsystem with variable coefficients", J. Optim. Theory Appl., vol. 114, pp. 373-395, 2002.
4.
B. Z. Guo and S. A. Ivanov, "Boundary controllability andobservability of a one-dimensional non-uniform SCOLE system", J. Optim. Theory Appl., vol. 127, pp. 89-108, 2005.
5.
I. Lasiecka, Mathematical Control Theory of Coupled PDEs, PA, Philadelphia:SIAM, 2002.
6.
W. Littman and L. Markus, "Stabilization of a hybrid systemof elasticity by feedback boundary damping", Annu. Mater. Pura Appl., vol. 152, pp. 281-330, 1988.
7.
W. Littman and L. Markus, "Exact boundary controllabilityof a hybrid system of elasticity", Archive Rational Mech. Anal., vol. 103, pp. 193-235, 1988.
8.
R. Pasumarthy, On Analysis and Control of Interconnected Finite- and Infinite-Dimensional Physical Systems, 2006.
9.
D. Salamon, "Infinite-dimensional linearsystems with unbounded control and observation: A functional analytical approach", Trans. Amer. Math. Soc., vol. 300, pp. 383-431, 1987.
10.
O. J. Staffans, "Passive and conservative continuous-timeimpedance and scattering systems. Part I: Well-posed systems", Math. Control Signals Syst., vol. 15, pp. 291-315, 2002.
11.
O. J. Staffans and G. Weiss, "Transfer functions of regular linear systems.Part II: The system operator and the Lax-Phillips semigroup", Trans. Amer. Math. Soc., vol. 354, pp. 3229-3262, 2002.
12.
O. J. Staffans and G. Weiss, "Transfer functions of regular linear systems.Part III: Inversions and duality", Integral Eq. Operator Theory, vol. 49, pp. 517-558, 2004.
13.
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Switzerland, Basel:Birkhuser-Verlag, 2009.
14.
J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, 2007.
15.
G. Weiss, "Transfer functions of regularlinear systems. Part I: Characterizations of regularity", Trans. Amer. Math. Soc., vol. 342, pp. 827-854, 1994.
16.
G. Weiss, "Regular linear systems withfeedback", Math. Control Signals Syst., vol. 7, pp. 23-57, 1994.
17.
G. Weiss and R. F. Curtain, "Dynamic stabilization of regularlinear systems", IEEE Trans. Autom. Control, vol. 42, no. 1, pp. 4-21, Jan. 1997.
18.
G. Weiss, O. J. Staffans and M. Tucsnak, "Well-posed linear systems –A survey with emphasis on conservative systems", Appl. Math. Comp. Sci., vol. 11, pp. 7-33, 2001.
19.
G. Weiss and X. Zhao, "Well-posedness and controllability of aclass of coupled linear systems", SIAM J. Control Optim., vol. 48, pp. 2719-2750, 2009.
20.
X. Zhao and G. Weiss, "Strong stabilization of a wind turbine towermodel", Proc. 48th IEEE Conf. Decision Control, pp. 5526-5531, 2009-Dec.