Abstract:
Present information technology is based on the laws of classical physics. However, advances in quantum physics have stimulated interest in its potential impact on such te...Show MoreMetadata
Abstract:
Present information technology is based on the laws of classical physics. However, advances in quantum physics have stimulated interest in its potential impact on such technology. This article is an introductory review of three aspects of quantum information processing, cryptography, computation, and teleportation. The author serves up hors d'oeuvres on the relevant parts of quantum physics and the sorts of quantum systems which might form the building blocks for quantum processors. Quantum cryptography utilizes states of individual quantum systems for the transfer of conventional classical bits of information. The impossibility of measuring quantum systems without disturbing them guarantees the detection of eavesdropping and hence secure information transfer is possible. In a sense, teleportation is the inverse of cryptography, using more robust classical bits to faithfully transfer a quantum state through a noisy environment. Quantum computation utilizes the evolving quantum state of a complex system, which consists of many interacting individuals. If such a machine could be built, it would be capable of solving some problems which are intractable on any conventional computer; he illustrates this with Shor's (see Proc. 35th IEEE Symposium on Foundations of Computer Science, p.124, 1994) quantum factoring algorithm. Details are given of the current experimental achievements, proposals, and prospects for the future and of the patents granted to date.
Published in: Proceedings of the IEEE ( Volume: 84, Issue: 12, December 1996)
DOI: 10.1109/5.546399
Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (14)
Select All
1.
Sudhir K. Routray, Mahesh K. Jha, Laxmi Sharma, Rahul Nyamangoudar, Abhishek Javali, Sutapa Sarkar, "Quantum cryptography for IoT: APerspective", 2017 International Conference on IoT and Application (ICIOT), pp.1-4, 2017.
2.
Omer Gokalp Memis, John Kohoutek, Wei Wu, Ryan M. Gelfand, Hooman Mohseni, "A Short-Wave Infrared Nanoinjection Imager With 2500 A/W Responsivity and Low Excess Noise", IEEE Photonics Journal, vol.2, no.5, pp.858-864, 2010.
3.
P.W. Phister, S.L. Drager, I.G. Plonisch, "Ep communications: the next revolutionary step in global communications", 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652), vol.6, pp.6_3021-6_3026, 2003.
4.
P. Rott, M.J. Feldman, "Characterization of macroscopic quantum behavior using RSFQ circuitry", IEEE Transactions on Applied Superconductivity, vol.11, no.1, pp.1010-1013, 2001.
5.
S. Reggiani, A. Bertoni, P. Bordone, R. Brunetti, C. Jacoboni, M. Rudan, G. Baccarani, "Two-qbit gates based on coupled quantum wires", 2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502), pp.184-187, 2000.
6.
S.T. Faraj, F. Al-Naima, S.Y. Ameen, "Quantum cryptographic key distribution in multiple-access networks", WCC 2000 - ICCT 2000. 2000 International Conference on Communication Technology Proceedings (Cat. No.00EX420), vol.1, pp.42-49 vol.1, 2000.
7.
L.K. Grover, "Quantum mechanical searching", Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol.3, pp.2255-2261 Vol. 3, 1999.
8.
D. Gupta, A.M. Kadin, "Single-photon-counting hotspot detector with integrated RSFQ readout electronics", IEEE Transactions on Applied Superconductivity, vol.9, no.2, pp.4487-4490, 1999.
9.
L. Grover, "Quantum computation", IEEE Potentials, vol.18, no.2, pp.4-8, 1999.
10.
L.K. Grover, "Quantum computation", Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013), pp.548-553, 1999.
11.
S.V. Ulyanoy, G. Degli Antoni, K. Yamafuji, T. Fukuda, G.G. Rizzotto, I. Kurawaki, "Physical limits and information bounds of micro control. II. Quantum soft computing and quantum searching algorithms", MHA'98. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. - Creation of New Industry - (Cat. No.98TH8388), pp.217-224, 1998.
12.
R. Rovatti, G. Baccarani, "Fuzzy reversible logic", 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228), vol.1, pp.761-766 vol.1, 1998.
13.
W. Porod, "Towards nanoelectronics: possible CNN implementations using nanoelectronic devices", 1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359), pp.20-25, 1998.
14.
M. Draganescu, "From solid state to quantum and molecular electronics, the deepening of information processing", 1997 International Semiconductor Conference 20th Edition. CAS '97 Proceedings, vol.1, pp.5-21 vol.1, 1997.
Cites in Papers - Other Publishers (39)
1.
Congya You, Ming Liu, Yi Zhang, Xiaoqian Wang, Yong Yan, Songlin Yu, "Design and performance study of narrowband polarized colloidal quantum dots photodetector", Journal of Physics D: Applied Physics, vol.58, no.5, pp.055102, 2025.
2.
H Ait Mansour, A Chouiba, M Mansour, M El Baz, "Nonlocal correlations and entanglement in two coupled double quantum dots under external magnetic field", Laser Physics Letters, vol.21, no.12, pp.125209, 2024.
3.
Akoramurthy Balasubramaniam, B. Surendiran, "QUMA: Quantum Unified Medical Architecture Using Blockchain", Informatics, vol.11, no.2, pp.33, 2024.
4.
J. V. Nguepnang, B. Donfack, C. M. Ekengoue, W. A. Nganfo, M. R. Kamsap, "Effect of electron-longitudinal-optical phonon coupling on the thermodynamic properties of asymmetric semiconductor quantum wire under the influence of magnetic field", Indian Journal of Physics, 2024.
5.
Anand Sharma, Alekha Parimal Bhatt, "Quantum Cryptography for Securing IoT-Based Healthcare Systems", Research Anthology on Securing Medical Systems and Records, pp.269, 2022.
6.
Puspak Pain, Arindam Sadhu, Kunal Das, Maitreyi Ray Kanjilal, "Quantum Random Number Generators for Cryptography: Design and Evaluation", Computational Advancement in Communication, Circuits and Systems, vol.786, pp.315, 2022.
7.
Anand Sharma, Alekha Parimal Bhatt, Limitations and Future Applications of Quantum Cryptography, pp.124, 2021.
8.
Anoopa Joshi, Atul Kumar, Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory, vol.307, pp.155, 2020.
9.
Vladimir G. Plekhanov, "Application of Isotopic Materials Science in Bulk and Low-Dimensional Structures", Introduction to Isotopic Materials Science, vol.248, pp.139, 2018.
10.
Qin Liao, Ying Guo, Duan Huang, "Cancelable remote quantum fingerprint templates protection scheme", Chinese Physics B, vol.26, no.9, pp.090302, 2017.
11.
I.F.I. Mikhail, I.M.M. Ismail, M. Ameen, "Effect of magnon-phonon interactions on magnon squeezed states in ferromagnets", Physica B: Condensed Matter, 2017.
12.
Vladimir G. Plekhanov, "Classical and Quantum Information", Isotope-Based Quantum Information, pp.45, 2012.
13.
Vladimir G. Plekhanov, "Concepts of Quantum Computers", Isotope-Based Quantum Information, pp.77, 2012.
14.
Jian Li, Huan-Yang Zheng, "Determinate joint remote preparation of an arbitraryW-class quantum state", Chinese Physics C, vol.36, no.7, pp.597, 2012.
15.
Omer Memis, Hooman Mohseni, Computational Finite Element Methods in Nanotechnology, pp.477, 2012.
16.
Omer Gokalp Memis, John Kohoutek, Wei Wu, Ryan M. Gelfand, Hooman Mohseni, "Signal-to-noise performance of a short-wave infrared nanoinjection imager", Optics Letters, vol.35, no.16, pp.2699, 2010.
17.
Martin W McCall, Ian Hodgkinson, "Properties of partially polarized light remitted from lossless polarizing elements", European Journal of Physics, vol.30, no.4, pp.S63, 2009.
18.
YANG XIAO, CHAOBIN HE, XUEHONG LU, XINHAI ZHANG, "ORGANIC–INORGANIC HYBRID NANOPARTICLES WITH QUANTUM CONFINEMENT EFFECT", International Journal of Nanoscience, vol.08, no.01n02, pp.185, 2009.
19.
Fan Zhang, Jian Xu, Akhlesh Lakhtakia, Ting Zhu, Sean M. Pursel, Mark W. Horn, "Circular polarization emission from an external cavity diode laser", Applied Physics Letters, vol.92, no.11, pp.111109, 2008.
20.
"Potential applications of fiber OPAs and OPOs", Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, pp.249, 2007.
21.
Jian Xu, Akhlesh Lakhtakia, Justin Liou, An Chen, Ian J. Hodgkinson, "Circularly polarized fluorescence from light-emitting microcavities with sculptured-thin-film chiral reflectors", Optics Communications, vol.264, no.1, pp.235, 2006.
22.
Fabio Dell’Anno, Silvio De Siena, Fabrizio Illuminati, "Multiphoton quantum optics and quantum state engineering", Physics Reports, vol.428, no.2-3, pp.53, 2006.
23.
He, Yang Xiao, Huang, Lin, Khine Y. Mya, Zhang, "Highly Efficient Luminescent Organic Clusters with Quantum Dot-Like Properties", Journal of the American Chemical Society, vol.126, no.25, pp.7792, 2004.
24.
M. Legré, M. Wegmüller, N. Gisin, "Quantum Measurement of the Degree of Polarization of a Light Beam", Physical Review Letters, vol.91, no.16, 2003.
25.
Sufyan T. Faraj, Fawzi Al-Naima, Siddeeq Y. Ameen, Security in the Information Society, vol.86, pp.435, 2002.
26.
Artur Korgul, "Novel Method for Identification of Aircraft Trajectories in Three-Dimensional Space", Journal of Guidance, Control, and Dynamics, vol.23, no.6, pp.1021, 2000.
27.
Tommaso Toffoli, "Nonconventional Computers", Wiley Encyclopedia of Electrical and Electronics Engineering, 1999.
28.
J. E. Mooij, T. P. Orlando, L. Levitov, Lin Tian, Caspar H. van der Wal, Seth Lloyd, "Josephson Persistent-Current Qubit", Science, vol.285, no.5430, pp.1036, 1999.
29.
Howard E. Brandt, "Qubit devices and the issue of quantum decoherence", Progress in Quantum Electronics, vol.22, no.5-6, pp.257, 1999.
30.
T. P. Orlando, J. E. Mooij, Lin Tian, Caspar H. van der Wal, L. S. Levitov, Seth Lloyd, J. J. Mazo, "Superconducting persistent-current qubit", Physical Review B, vol.60, no.22, pp.15398, 1999.