Loading [MathJax]/extensions/MathZoom.js
A Novel Fuzzy-Logic-Controller-Based Torque and Flux Controls of IPM Synchronous Motor | IEEE Journals & Magazine | IEEE Xplore

A Novel Fuzzy-Logic-Controller-Based Torque and Flux Controls of IPM Synchronous Motor


Abstract:

This paper presents a novel fuzzy logic controller (FLC)-based wide-speed-range operation of interior permanent-magnet synchronous motor (IPMSM) drives. The proposed FLC ...Show More

Abstract:

This paper presents a novel fuzzy logic controller (FLC)-based wide-speed-range operation of interior permanent-magnet synchronous motor (IPMSM) drives. The proposed FLC is designed in such a way that it can simultaneously control both torque and flux of the motor while maintaining current and voltage constraints. Thus, a stand-alone FLC is utilized, whose outputs are d- and q-axis currents. The proposed FLC is designed based on conventional maximum torque per ampere operation below the rated speed and the field-weakening operation above the rated speed. The complete IPMSM drive is experimentally implemented, utilizing dSPACE DSP board DS1104 for a prototype 5-hp motor. The performance of the proposed drive is tested both in simulation and experiment at different operating conditions. The robustness of the controller and its prospective real-time industrial drive application are evidenced by the results.
Published in: IEEE Transactions on Industry Applications ( Volume: 46, Issue: 3, May-june 2010)
Page(s): 1220 - 1229
Date of Publication: 25 March 2010

ISSN Information:

References is not available for this document.

Nomenclature

,

–-axis voltage.

,

–-axis current.

,

–-axis inductance.

Stator resistance per phase.

,

Motor command speed and rotor speed.

Motor rated speed.

Number of pole pairs.

Magnetic flux linkage.

Maximum phase voltage amplitude.

Maximum line current amplitude.

Maximum terminal voltage neglecting stator resistance.

, ,

Scaling factors for speed error, speed, and acceleration.

,

Scaling factors for fuzzy controller output - and -axis currents.

Select All
1.
M. F. Rahman, L. Zhong and K. W. Lim, "A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening", IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1246-1253, Nov./Dec. 1998.
2.
J. Oyama, K. Ogawa, T. Higuchi, E. Rashad, M. Mamo and M. Sawamura, "Sensorless vector-control of IPM motors over whole speed range", Proc. 4th IEEE Int. Conf. Power Electron. Drive Syst., vol. 2, pp. 448-451, 2001-Oct.-2225.
3.
C. Mademlis and V. G. Agelidis, "A high-performance vector controlled interior PM synchronous motor drive with extended speed range capability", Proc. 27th Annu. Conf. IEEE Ind. Electron. Soc., vol. 2, pp. 1475-1482, 2001-Nov. 29Dec. 2.
4.
J. Wai and T. M. Jahns, "A new control technique for achieving wide constant power speed operation with an interior PM alternator machine", Conf. Rec. 36th IEEE IAS Annu. Meeting, vol. 2, pp. 807-814, 2001-Sep. 30Oct. 4.
5.
L. Xu and S. Li, "A fast response torque control for interior permanent-magnet synchronous motors in extended flux-weakening operation regime", Proc. IEEE Int. Electr. Mach. Drives Conf., pp. 33-36, 2001.
6.
S. Morimoto, M. Sanada and Y. Takeda, "Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives", IEEE Trans. Ind. Appl., vol. 30, no. 6, pp. 1632-1637, Nov./Dec. 1994.
7.
C. T. Pan and S. Sue, "A linear maximum torque per ampere control for IPMSM drive over full-speed range", IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 359-366, Jun. 2005.
8.
T. M. Jahns, G. B. Kliman and T. W. Neumann, "Interior permanent magnet synchronous motors for adjustable speed drives", Conf. Rec. IEEE IAS Annu. Meeting, pp. 814-823, 1985.
9.
P. Pillay and R. Krishnan, "Control characteristics and speed controller design for a high performance permanent magnet synchronous motor drive", Proc. IEEE PESC, pp. 598-606, 1987.
10.
M. Tursini, F. Parasiliti and D. Zhang, "Real-time gain tuning of PI controllers for high-performance PMSM drives", IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1018-1026, Jul./Aug. 2002.
11.
B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler and M. Trlep, "Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor", IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1264-1271, Sep./Oct. 2003.
12.
G.-H. Kang, J.-P. Hong and G.-T. Kim, "Nonlinear characteristic analysis of interior type permanent magnet synchronous motor", Proc. Int. Conf. IEMD, pp. 69-71, 1999-May-912.
13.
C.-T. Pan and S.-M. Sue, "A linear maximum torque per ampere control for IPMSM drives considering magnetic saturation", Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., vol. 3, pp. 2712-2717, 2004-Nov.-26.
14.
M. N. Uddin, T. S. Radwan and M. A. Rahman, "Performance of interior permanent magnet drive over wide speed range", IEEE Trans. Energy Convers., vol. 72, no. 1, pp. 79-84, Mar. 2002.
15.
C.-T. Lin and C. S. G. Lee, Neural Fuzzy Systems A Neuro-Fuzzy Synergism to Intelligent Systems, NJ, Englewood Cliffs:Prentice-Hall, pp. 533-607, 1996.
16.
M. N. Uddin, T. S. Radwan and M. A. Rahman, "Performances of fuzzy logic based indirect vector control for induction motor drive", IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1219-1225, Sep./Oct. 2002.
17.
Z. Ibrahim and E. Levi, "A comparative analysis of fuzzy logic and PI speed control in high performance AC drives using experimental approach", IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1210-1218, Sep./Oct. 2002.
18.
H. D. Mathur and S. Ghosh, "A comprehensive analysis of intelligent controllers for load frequency control", Proc. IEEE Power India Conf., pp. 853-857, 2006-Apr.-1012.
19.
P. Stewart, D. A. Stone and P. J. Fleming, "Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop", Eng. Appl. Artif. Intell., vol. 17, no. 3, pp. 275-284, Apr. 2004.
20.
C. Cavallaro, M. Coco, A. Raciti and A. Testa, "A neuro-fuzzy approach to design adaptive control systems for PM motor drives", Proc. IEEE Int. Caracas Conf. Devices Circuits Syst., pp. 225-229, 1995-Dec.-1214.
21.
Z. Koviac, S. Bogdan and P. Crnosija, "Fuzzy rule-based model reference adaptive control of permanent magnet synchronous motor", Conf. Rec. IEEE IECON, pp. 207-212, 1993.
22.
A. Rubaai, D. Ricketts and M. D. Kankam, "Development and implementation of an adaptive fuzzy-neural-network controller for brushless drives", IEEE Trans. Ind. Appl., vol. 38, no. 2, pp. 441-447, Mar./Apr. 2002.
23.
F.-J. Lin and R.-J. Wai, "Robust recurrent fuzzy neural network control for linear synchronous motor drive system", Neurocomputing, vol. 50, pp. 365-390, Jan. 2003.
24.
M. Chiaberge, G. Di Bene, S. Di Pascoli, B. Lazzerini, A. Maggiore and L. M. Reyneri, "An integrated hybrid approach to the design of high-performance intelligent controllers", Proc. Int. IEEE/IAS Conf. Ind. Autom. Control: Emerging Technol., pp. 436-443, 1995-May-2227.
25.
O. M. Ahtiwash, M. Z. Abdulmuin and S. F. Siraj, "A neural-fuzzy logic approach for modeling and control of nonlinear systems", Proc. IEEE Int. Symp. Intell. Control, pp. 270-275, 2002-Oct.-2730.
26.
M. V. Aware, A. G. Kothari and S. O. Choube, "Application of adaptive neuro-fuzzy controller (ANFIS) for voltage source inverter fed induction motor drive aware", Proc. IEEE IPEMC, vol. 2, pp. 935-939, 2000-Aug.-1518.
27.
B. N. Mobarakeh, F. Meibody-Tabar and F. M. Sargos, "A self organizing intelligent controller for speed and torque control of a PMSM", Conf. Rec. IEEE IAS Annu. Meeting, pp. 1283-1290, 2000.
28.
Y. Chen, B. Yang, X. Gu and S. Xing, "Novel fuzzy control strategy of IPMSM drive system with voltage booster", Proc. 6th World Congr. Intell. Control Autom., vol. 2, pp. 8084-8087, 2006-Jun.-2123.
29.
M. N. Uddin and M. A. Rahman, "Fuzzy logic based speed control of an IPM synchronous motor drive", J. Adv. Comput. Intell., vol. 4, no. 3, pp. 212-219, 2000.
30.
C. Butt, M. A. Hoque and M. A. Rahman, "Simplified fuzzy logic based MTPA speed control of IPMSM drive", Conf. Rec. IEEE IAS Annu. Meeting, vol. 1, pp. 499-506, 2003-Oct.-1216.
Contact IEEE to Subscribe

References

References is not available for this document.