I. Introduction
Consider a speech signal corrupted by additive noise that is statistically independent of the signal. This noisy signal is characterized by a signal to noise ratio (SNR) calculated over the entire duration of the signal. In this paper, a pattern recognition approach using six linear predictive (LP) [1] derived features is used to blindly estimate the SNR of the noisy speech signal. Principal component analysis (PCA) [2] [3] of the feature vectors is shown to improve the SNR estimate and reduce the dimension of the feature vector. In addition, a further performance improvement is achieved by combining the SNR estimates generated by the six features. A multilayer perceptron (MLP) neural network [4] classifier is used.