Loading [MathJax]/extensions/MathZoom.js
Grid Impedance Monitoring System for Distributed Power Generation Electronic Interfaces | IEEE Journals & Magazine | IEEE Xplore

Grid Impedance Monitoring System for Distributed Power Generation Electronic Interfaces


Abstract:

This paper proposes a grid impedance monitoring system for distributed power generation electronic interfaces. The system estimates the grid equivalent impedance and volt...Show More

Abstract:

This paper proposes a grid impedance monitoring system for distributed power generation electronic interfaces. The system estimates the grid equivalent impedance and voltage source from the voltage measurements performed at the point of common coupling. The estimation algorithm is based on a recursive least-squares algorithm implemented in the complex field. Simultaneously, the system evaluates the quality of the estimation, minimizing its influence on the grid and detecting islanding situations. The proposed system performance has been evaluated under experimental testing.
Published in: IEEE Transactions on Instrumentation and Measurement ( Volume: 58, Issue: 9, September 2009)
Page(s): 3112 - 3121
Date of Publication: 05 June 2009

ISSN Information:

References is not available for this document.

I. Introduction

The Global increase in energy consumption and the fast development of highly populated countries are unmasking problems in the current power system paradigm. Recent blackout problems in both the U.S. and Europe are focusing the point of view of researchers and governments toward a distributed power system model. In this new model, distributed power generation systems (DPGSs) such as wind turbines, photovoltaic (PV) systems, and microgas turbines will play a more important role (Fig. 1).

General situation diagram.

Select All
1.
M. Liserre, R. Teodorescu and F. Blaabjerg, "Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values", IEEE Trans. Power Electron., vol. 21, no. 1, pp. 263-272, Jan. 2006.
2.
M. Liserre, R. Teodorescu and F. Blaabjerg, "Stability of grid-connected PV inverters with large grid impedance variation", Proc. 35th Annu. IEEE Power Electron. Spec. Conf., pp. 4773-4779, 2004.
3.
S. Cobreces, E. Bueno, F. J. Sanchez, F. Huerta and P. Rodriguez, "Influence analysis of the effects of an inductive-resistive weak grid over \$L\$ and \$LCL\$ filter current hysteresis controllers", Proc. Eur. Power Electron. Conf., pp. 1-10, 2007.
4.
A. Tarkiainen, R. Pollanen, M. Niemela and J. Pyrhonen, "Identification of grid impedance for purposes of voltage feedback active filtering", IEEE Power Electron. Lett., vol. 2, no. 1, pp. 6-10, Mar. 2004.
5.
M. Ciobotaru, R. Teodorescu, P. Rodriguez, A. Timbus and F. Blaabjerg, "Online grid impedance estimation for single-phase grid-connected systems using PQ variations", Proc. PESC, pp. 2306-2312, 2007.
6.
A. V. Timbus, R. Teodorescu, F. Blaabjerg and U. Borup, "Online grid measurement and ENS detection for PV inverter running on highly inductive grid", IEEE Power Electron. Lett., vol. 2, no. 3, pp. 77-82, Sep. 2004.
7.
A. V. Timbus, P. Rodriguez, R. Teodorescu and M. Ciobotaru, "Line impedance estimation using active and reactive power variations", Proc. IEEE Power Electron. Spec. Conf., pp. 1273-1279, 2007.
8.
L. Asiminoaei, R. Teodorescu, F. Blaabjerg and U. Borup, "A new method of on-line grid impedance estimation for PV inverters", Proc. APEC, vol. 3, pp. 1527-1533, 2004.
9.
J. P. Rhode, A. W. Kelley and M. E. Baran, "Complete characterization of utilization-voltage power system impedance using wideband measurement", IEEE Trans. Ind. Appl., vol. 33, no. 6, pp. 1472-1479, Nov./Dec. 1997.
10.
M. Sumner, B. Palethorpe and D. Thomas, "Impedance measurement for improved power quality—Part 1: The measurement technique", IEEE Trans. Power Del., vol. 19, no. 3, pp. 1442-1448, Jul. 2004.
11.
M. Sumner, B. Palethorpe, D. Thomas, P. Zanchetta and M. C. D. Piazza, "A technique for power supply harmonic impedance estimation using a controlled voltage disturbance", IEEE Trans. Power Electron., vol. 17, no. 2, pp. 207-215, Mar. 2002.
12.
Z. Staroszczyk, "A method for real-time wide-band identification of the source impedance in power systems", IEEE Trans. Instrum. Meas., vol. 54, no. 1, pp. 377-385, Feb. 2005.
13.
A. de Oliveira, J. C. de Oliveira, J. W. Resende and M. S. Miskulin, "Practical approaches for AC system harmonic impedance measurement", IEEE Trans. Power Del., vol. 6, no. 4, pp. 1721-1726, Oct. 1991.
14.
A. A. Girgis and R. B. McManis, "Frequency domain techniques for modeling distribution or transmission networks using capacitor switching induced transients", IEEE Trans. Power Del., vol. 4, no. 3, pp. 1882-1890, Jul. 1989.
15.
G. Fusco, A. Losi and M. Russo, "Constrained least squares methods for parameter tracking of power system steady-state equivalent circuits", IEEE Trans. Power Del., vol. 15, no. 3, pp. 1073-1080, Jul. 2000.
16.
M. Liserre, F. Blaabjerg and R. Teodorescu, "Grid impedance detection via excitation of LCL-filter resonance", Conf. Rec. 40th IEEE IAS Annu. Meeting, vol. 2, pp. 910-916, 2005.
17.
A. A. Girgis, W. H. Quaintance, J. Qiu and E. B. Makram, "A time-domain three-phase power system impedance modeling approach for harmonic filter analysis", IEEE Trans. Power Del., vol. 8, no. 2, pp. 504-510, Apr. 1993.
18.
K. O. H. Pedersen, A. H. Nielsen and N. K. Poulsen, "Short-circuit impedance measurement", Proc. Inst. Elect. Eng.Gener. Transm. Distrib., vol. 150, no. 2, pp. 169-174, Mar. 2003.
19.
S. Cobreces, F. Huerta, D. Pizarro, F. J. Rodriguez and E. Bueno, "Three-phase power system parametric identification based in complex-space recursive least squares", Proc. IEEE Int. Symp. WISP, pp. 1-6, 2007.
20.
S. Cobreces, P. Rodriguez, D. Pizarro, F. Rodriguez and E. Bueno, "Complex-space recursive least squares power system identification", 38th IEEE PESC, pp. 2478-2484, 2007.
21.
J. Enslin and P. Heskes, "Harmonic interaction between a large number of distributed power inverters and the distribution network", IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1586-1593, Nov. 2004.
22.
C. L. Fortescue, "Method of symmetrical coordinates applied to the solution of polyphase networks", Trans. AIEE, vol. 37, pp. 1027-1140, 1918.
23.
L. Ljung, System Identification: Theory for the User, NJ, Englewood Cliffs:Prentice-Hall, 1986.
24.
A. Cataliotti, V. Cosentino and S. Nuccio, "A phase-locked Loop for the synchronization of power quality instruments in the presence of stationary and transient disturbances", IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2232-2239, Dec. 2007.
25.
E. Bueno, F. Rodriguez, F. Espinosa and S. Cobreces, "SPLL design to flux oriented of a VSC interface for wind power applications", 32nd Annu. Conf. IEEE IECON, pp. 2451-2456, 2005-Nov.-610.
26.
M. Mojiri, M. Karimi-Ghartemani and A. Bakhshai, "Estimation of power system frequency using an adaptive notch filter", IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2470-2477, Dec. 2007.
27.
F. J. Rodriguez, S. Cobreces, E. J. Bueno, A. Hernandez, R. Mateos and F. Espinosa, "Control electronic platform based on floating-point DSP and FPGA for a NPC multilevel back-to-back converter", Elect. Power Syst. Res., vol. 78, no. 9, pp. 1597-1609, Sep. 2008.
28.
C. Giron, F. J. Rodriguez, F. Huerta and E. Bueno, "Implementing high speed communication buses for a FPGA-DSP architecture for digital control of power electronics", Proc. IEEE Int. Symp. Intell. Signal Process., pp. 1-6, 2007.

Contact IEEE to Subscribe

References

References is not available for this document.