Abstract:
Knowledge discovery in databases and data mining aim at semiautomatic tools for the analysis of large data sets. We give an overview of the area and present some of the r...Show MoreMetadata
Abstract:
Knowledge discovery in databases and data mining aim at semiautomatic tools for the analysis of large data sets. We give an overview of the area and present some of the research issues, especially from the database angle.
Published in: Proceedings of 8th International Conference on Scientific and Statistical Data Base Management
Date of Conference: 18-20 June 1996
Date Added to IEEE Xplore: 06 August 2002
Print ISBN:0-8186-7264-1
References is not available for this document.
Select All
1.
R. Agrawal, T. Imielinski and A. Swami, "Mining association rules between sets of items in large databases", Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD'93), pp. 207-216, 1993-May.
2.
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. I. Verkamo, "Fast discovery of association rules" in Advances in Knowledge Discovery and Data Mining, CA, Menlo Park:AAAI Press, pp. 307-328, 1996.
3.
P. A. Boncz, W. Quak and M. L. Kersten, "Monet and its geographical extensions: a novel approach to high-performance GIS processing", EDBT'96, 1996.
4.
L. De Raedt and M. Bruynooghe, "A theory of clausal discovery", Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93), pp. 1058-1053, 1993.
5.
L. De Raedt and S. Džeroski, "First-order jkclausal theories are PAC-learnable", Artificial Intelligence, vol. 70, pp. 375-392, 1994.
6.
J. Elder and D. Pregibon, "A statistical perspective on knowledge discovery in databases" in Advances in Knowledge Discovery and Data Mining, CA, Menlo Park:AAAI Press, pp. 83-113, 1996.
7.
U. M. Fayyad, S. G. Djorgovski and N. Weir, "Automating the analysis and cataloging of sky surveys" in Advances in Knowledge Discovery and Data Mining, CA, Menlo Park:AAAI Press, pp. 471-494, 1996.
8.
U. M. Fayyad, G. Piatetsky-Shapiro and P. Smyth, "From data mining to knowledge discovery: An overview" in Advances in Knowledge Discovery and Data Mining, CA, Menlo Park:AAAI Press, pp. 1-34, 1996.
9.
Advances in Knowledge Discovery and Data Mining, CA, Menlo Park:AAAI Press, 1996.
10.
6th Annual Symposium on Combinatorial Pattern Matching (CPM 95), vol. 937, 1995-July.
11.
J. Gray, A. Bosworth, A. Layman and H. Pirahesh, "Data Cube: A relational aggregation operator generalizing group-by cross-tab and sub-totals", 12th International Conference on Data Engineering (ICDE'96), pp. 152-159, 1996-Feb.
12.
J. Han and Y. Fu, "Discovery of multiple-level association rules from large databases", Proceedings of the 21st International Conference on Very Large Data Bases (VLDB'95), pp. 420-431, 1995.
13.
K. Hätönen, M. Klemettinen, H. Mannila, P. Ronkainen and H. Toivonen, "Knowledge discovery from telecommunication network alarm databases", 12th International Conference on Data Engineering (ICDE '96), pp. 115-122, 1996-Feb.
14.
M. Holsheimer, M. Kersten, H. Mannila and H. Toivonen, "A perspective on databases and data mining", Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD'95), pp. 150-155, 1995-Aug.
15.
M. Holsheimer, M. Kersten and A. Siebes, "Data surveyor: Searching the nuggets in parallel" in Advances in Knowledge Discovery and Data Mining, CA, Menlo Park:AAAI Press, pp. 447-467, 1996.
16.
T. Imielinski, "A database view on data mining", KDD'95 conference.
17.
M. Jaeger, H. Mannila and E. Weydert, "Data mining as selective theory extraction in probabilistic logic", SIGMOD'96 Data Mining Workshop, 1996.
18.
J.-U. Kietz and S. Wrobel, "Controlling the complexity of learning in logic through syntactic and task-oriented models" in Inductive Logic Programming, London:Academic Press, pp. 335-359, 1992.
19.
W. Kloesgen, "Efficient discovery of interesting statements in databases", Journal of Intelligent Information Systems, vol. 4, no. 1, pp. 53-69, 1995.
20.
H. Mannila and K.-J. Räihä, "Design by example: An application of Armstrong relations", Journal of Computer and System Sciences, vol. 33, no. 2, pp. 126-141, 1986.
21.
H. Mannila and K.-J. Räihä, Design of Relational Databases, UK, Wokingham:Addison-Wesley Publishing Company, 1992.
22.
H. Mannila and H. Toivonen, Discovering generalized episodes using minimal occurrences, March 1996.
23.
H. Mannila and H. Toivonen, Multiple uses of frequent sets and condensed representations, March 1996.
24.
H. Mannila and H. Toivonen, "On an algorithm for finding all interesting sentences", Cybernetics and Systems Research '96, 1996-Apr.
25.
H. Mannila, H. Toivonen and A. I. Verkamo, "Discovering frequent episodes in sequences", Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD'95), pp. 210-215, 1995-Aug.
26.
C. J. Matheus, G. Piatetsky-Shapiro and D. McNeill, "Selecting and reporting what is interesting" in Advances in Knowledge Discovery and Data Mining, CA, Menlo Park:AAAI Press, pp. 495-515, 1996.
27.
K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms, New York:Prentice Hall, 1993.
28.
A. Savasere, E. Omiecinski and S. Navathe, "An efficient algorithm for mining association rules in large databases", Proceedings of the 21st International Conference on Very Large Data Bases (VLDB'95), pp. 432-444, 1995.
29.
J. W. Tukey, Exploratory Data Analysis, MA, Reading:Addison-Wesley Publishing Company, 1977.