Abstract:
This paper presents the decomposition property of fuzzy systems using a simple, constructive, decomposition procedure. That is, by properly dividing the input space into ...Show MoreMetadata
Abstract:
This paper presents the decomposition property of fuzzy systems using a simple, constructive, decomposition procedure. That is, by properly dividing the input space into sub-input spaces, a general fuzzy system is decomposed into several sub-fuzzy systems which are the simplest fuzzy systems in the sub-input spaces. Based on the decomposition property of fuzzy systems, the analysis of fuzzy systems can be divided into two steps: first, analyze the properties of the simplest fuzzy systems, and then, use the decomposition property to extend the results to general fuzzy systems. Using this idea, two applications of the decomposition property are given. The first is the application to the representation capability analysis of fuzzy systems. The second is the application to the analysis of a class of nonlinear control systems. Then, based on the piecewise affine fuzzy-system model, the existence condition and the design of a stable control for a class of single-input single-output (SISO) nonlinear systems are presented.
Published in: IEEE Transactions on Fuzzy Systems ( Volume: 4, Issue: 2, May 1996)
DOI: 10.1109/91.493909
References is not available for this document.
Select All
1.
H. Ying, "The simplest fuzzy controllers using different inference methods are different nonlinear proportional-integral controllers with variable gains", Automatica, vol. 29, pp. 1579-1589, Nov. 1993.
2.
H. Ying, W. Siler and J. J. Buckley, "Fuzzy control theory: a nonlinear case", Automatica, vol. 26, pp. 513-520, May 1990.
3.
J. J. Buckley and H. Ying, "Linear fuzzy controller: It is a linear nonfuzzy controller", Informat. Sci., vol. 51, pp. 183-192, July 1990.
4.
W. Siler and H. Ying, "Fuzzy control theory: The linear case", Fuzzy Set Syst., vol. 33, pp. 275-290, Dec. 1989.
5.
H. Ying, "A nonlinear fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and a local nonlinear proportional-integral controller", Automatica, vol. 29, pp. 499-505, Mar. 1993.
6.
C. C. Lee, "Fuzzy logic in control systems: Fuzzy logic control̵Part I and II", IEEE Trans. Syst. Man Cybern., vol. 20, pp. 404-435, Mar./Apr. 1990.
7.
M. Mizumoto, "Fuzzy controls under various fuzzy reasoning methods", Informat. Sci., vol. 45, pp. 129-151, 1988.
8.
D. A. Linkens and J. Nie, "A unified real-time approximate reasoning approach for use in intelligent control̵Part 1: Theoretical development", Int. J. Control, vol. 56, pp. 347-364, Aug. 1992.
9.
D. A. Linkens and J. Nie, "A unified real-time approximate reasoning approach for use in intelligent control̵Part 2: Application to multivariable blood pressure control", Int. J. Control, vol. 56, pp. 365-397, Aug. 1992.
10.
L. X. Wang, "Stable adaptive fuzzy control of nonlinear systems", IEEE Trans. Fuzzy Syst., vol. 1, pp. 146-155, May 1993.
11.
L. X. Wang and J. M. Mendel, "Fuzzy basis functions universal approximation and orthogonal least-squares learning", IEEE Trans. Neural Networks, vol. 3, pp. 807-814, Sept. 1992.
12.
X. J. Zeng and M. G. Singh, "Approximation theory of fuzzy systems̵SISO case", IEEE Trans. Fuzzy Syst., vol. 2, pp. 162-176, May 1994.
13.
X. J. Zeng and M. G. Singh, "Approximation theory of fuzzy systems̵MIMO case", IEEE Trans. Fuzzy Syst., vol. 3, pp. 219-235, May 1995.
14.
X. J. Zeng and M. G. Singh, "Approximation properties of fuzzy systems generated by the min inference", IEEE Trans. Syst. Man Cybern., vol. 26, pp. 187-193, Feb. 1996.
15.
M. Sugeno, "An introductory survey of fuzzy control", Inform. Sci., vol. 36, pp. 59-83, 1985.
16.
T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control", IEEE Trans. Syst. Man Cybern., vol. SMC-15, pp. 116-132, Jan./Feb. 1985.
17.
"Theory of the fuzzy controller: A brief survey", Cybernetics and Applied Systems, pp. 293-307, 1992.
18.
J. J. Buckley, "Sugeno type controllers are universal controllers", Fuzzy Sets Syst., vol. 53, pp. 299-303, 1993.
19.
W. M. G. van Bokhoven, Piecewise Linear Modeling and Analysis, 1981.
20.
E. D. Sontag, "Nonlinear regulation: the piecewise linear approach", IEEE Trans. Automat. Contr., vol. 26, pp. 346-358, Apr. 1981.
21.
S. P. Banks and S. A. Khathur, "Structure and control of piecewise linear systems", Int. J. Contr., vol. 50, pp. 667-686, Aug. 1989.
22.
C. Guzelis and I. C. Goknar, "A canonical representation for piecewise-affine maps and its applications to circuit analysis", IEEE Trans. Circuits Syst., vol. 38, pp. 1342-1354, Nov. 1991.
23.
K. Yamamura and M. Ochiai, "An efficient algorithm for finding all solutions of piecewise-linear resistive circuits", IEEE Trans. Circuits Syst.‐I, vol. 39, pp. 213-221, Mar. 1992.
24.
T. A. M. Kevenaar, D. M. W. Leenaerts and W. M. G. van Bokhoven, "Extensions to Chua's explicit piecewise-linear function descriptions", IEEE Trans. Circuits Syst.‐I, vol. 41, pp. 308-314, Apr. 1994.
25.
M. Mizumoto, "Realization of PID controls by fuzzy control methods", Proc. IEEE Int. Conf. Fuzzy Syst., pp. 709-715, Mar. 1992.
26.
C.-C. Wong, "Realization of linear outputs by using mixed fuzzy logics", Fuzzy Sets Syst., vol. 58, pp. 329-337, Sept. 1993.
27.
T. Sudkamp and R. J. Hammell, "Interpolation completion and learning fuzzy rules", IEEE Trans. Syst. Man Cybern., vol. 24, pp. 332-342, Feb. 1994.
28.
X. J. Zeng and M. G. Singh, "Approximation accuracy analysis of fuzzy systems as function approximators", IEEE Trans. Fuzzy Syst., vol. 4, pp. 44-63, Feb. 1996.
29.
K. Tanaka and M. Sugeno, "Stability analysis and design of fuzzy control systems", Fuzzy Set Syst., vol. 45, pp. 135-156, 1992.
30.
K. Tanaka and M. Sano, "A robust stabilization problem of fuzzy control systems and its applications to backing up control of a truck-trailer", IEEE Trans. Fuzzy Syst., vol. 2, pp. 119-134, May 1994.