Abstract:
A pair of orthogonal pulse vector basis functions is demonstrated for the calculation of electromagnetic scattering from arbitrarily-shaped material bodies. The basis fu...Show MoreMetadata
Abstract:
A pair of orthogonal pulse vector basis functions is demonstrated for the calculation of electromagnetic scattering from arbitrarily-shaped material bodies. The basis functions are intended for use with triangular surface patch modeling applied to a method of moments (MoM) solution. For modeling the behavior of dielectric materials, several authors have used the same set of basis functions to represent equivalent electric and magnetic surface currents. This practice can result in zero-valued or very small diagonal terms in the moment matrix and an unstable numerical solution. To provide a more stable solution, we have developed orthogonally placed, pulse basis vectors: one for the electric surface current and one for the magnetic surface current. This combination ensures strongly diagonal moment matrices. The basis functions are suitable for electric field integral equation (EFIE), magnetic field integral equation (HFIE), and combined field formulations. In this work, we describe the implementations for EFIE and HFIE formulations and show example results for canonical figures.
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 57, Issue: 7, July 2009)