Abstract:
We present a bound on the number of sources identifiable in a class of array processing models with multiple parameters and signals per source. The bound is applied to de...Show MoreMetadata
Abstract:
We present a bound on the number of sources identifiable in a class of array processing models with multiple parameters and signals per source. The bound is applied to determine the maximum number of uniquely resolvable plane-wave sources in various acoustic and electromagnetic vector-sensor models. We examine the use of a priori information about the sources, the effects of known and unknown noise characteristics, and the presence of nuisance parameters. Connections between identifiability and existence of the Cramer-Rao bound (CRB) are investigated. We show quantitatively how assumptions about the parameters can fundamentally affect the maximum number of identifiable sources.
Published in: IEEE Transactions on Signal Processing ( Volume: 44, Issue: 1, January 1996)
DOI: 10.1109/78.482014
References is not available for this document.
Select All
1.
Y. Bresler and A. Macovski, "On the number of signals resolvable by a uniform linear array", IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-34, pp. 1361-1375, Dec. 1986.
2.
P. E. Caines, Linear Stochastic Systems, 1988.
3.
E. R. Ferrara Jr. and T. M. Parks, "Direction finding with an array of antennas having diverse polarizations", IEEE Trans. Antennas Propagat., vol. AP-31, pp. 231-236, Mar. 1983.
4.
G. F. Hatke, "Conditions for unambiguous source location using polarization diverse arrays", Proc. 27th Asilomar Conf. Signals Syst. Comput., pp. 1365-1369, Nov. 1993.
5.
B. Hochwald and A. Nehorai, "Polarimetric modeling and parameter estimation with electromagnetic vector sensors", IEEE Trans. Signal Processing, vol. 43, pp. 1923-1935, Aug. 1995.
6.
B. Hochwald and A. Nehorai, On identifiability and information-regularity in parametrized normal distributions, Jan. 1994.
7.
B. Hochwald and A. Nehorai, "Identifiability in array processing models with vector-sensor applications", Proc. IEEE 7th Signal Processing Workshop Stat. Signal Array Processing, pp. 121-124, June 1994.
8.
J. D. Jackson, Classical Electrodynamics, 1975.
9.
C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, 1974.
10.
A. Nehorai and E. Paldi, "Vector-sensor array processing for electromagnetic source localization", IEEE Trans. Signal Processing, vol. 42, pp. 376-398, Feb. 1994.
11.
A. Nehorai and E. Paldi, "Acoustic vector-sensor array processing", IEEE Trans. Signal Processing, vol. 42, pp. 2481-2491, Sept. 1994.
12.
A. Nehorai, D. Starer and P. Stoica, "Direction-of-arrival estimation in applications with multipath and few snapshots", Circ. Syst. Signal Processing, vol. 10, no. 3, pp. 327-342, 1991.
13.
A. D. Pierce, Acoustics̵An Introduction to Its Physical Principles and Applications, 1981.
14.
R. O. Schmidt, A signal subspace approach to multiple emitter location and spectral estimation, Nov. 1981.
15.
M. D. Shuster, "A survey of attitude representations", J. Astronaut. Sci., vol. 41, no. 4, pp. 439-517, Oct.̵Dec. 1993.
16.
K. C. Tan, K.-C. Ho and A. Nehorai, Uniqueness study of measurements obtainable with an electromagnetic vector sensor, 1994.
17.
A. Wald, "Note on the consistency of the maximum likelihood estimate", Ann. Math. Stat., vol. 20, pp. 595-601, 1949.
18.
A. Wald, "Tests of statistical hypotheses concerning several parameters when the number of observations is large", Trans. Amer. Math. Soc., vol. 54, pp. 426-482, 1943.
19.
M. Wax and I. Ziskind, "On unique localization of multiple sources by passive sensor arrays", IEEE Trans. Acoust. Speech Signal Processing, vol. 37, pp. 996-1000, July 1989.