Abstract:
The structure of the kinematic and dynamic models of wheeled mobile robots is analyzed. It is shown that, for a large class of possible configurations, they can be classi...Show MoreMetadata
Abstract:
The structure of the kinematic and dynamic models of wheeled mobile robots is analyzed. It is shown that, for a large class of possible configurations, they can be classified into five types, characterized by generic structures of the model equations. For each type of model the following questions are addressed: (ir)reducibility and (non)holonomy, mobility and controllability, configuration of the motorization, and feedback equivalence.
Published in: IEEE Transactions on Robotics and Automation ( Volume: 12, Issue: 1, February 1996)
DOI: 10.1109/70.481750
References is not available for this document.
Select All
1.
G. Bastin and G. Campion, "On adaptive linearizing control of omnidirectional mobile robots", Proc. MTNS 89, vol. 2, pp. 531-538.
2.
C. Samson and K. Ait-Abderahim, "Feedback control of a nonholonomic wheeled cart in cartesian space", Proc. 1991 IEEE Int. Conf. Robotics and Automation, pp. 1136-1141, Apr. 1991.
3.
C. Canudas de Wit and O. J. Sordalen, "Exponential stabilization of mobile robots with nonholonomic constraints", IEEE Conf. Decision and Control, pp. 692-697, Dec. 1991.
4.
J. P. Laumond, "Controllability of a multibody mobile robot", ICAR, pp. 1033-1038, 1991.
5.
E. Badreddin and M. Mansour, "Fuzzy-tuned state-feedback control of a nonholonomic mobile robot", IFAC World Congr., pp. II 212, 1993.
6.
R. M. Murray and S. S. Sastry, "Nonholonomic motion planning: Steering using sinusoids", IEEE Trans. Automat. Contr., vol. 38, pp. 700-716, May 1993.
7.
P. Rouchon, M. Fliess, J. Le´vine and P. Martin, "Flatness and motion planning: The car with n trailers", Proc. European Control Conf. 93, pp. 1518-1522.
8.
J. B. Pomet, B. Thuillot, G. Bastin and G. Campion, "A hybrid strategy for the feedback stabilization of nonholonomic mobile robots", IEEE Int. Conf. Robotics and Automation, pp. 129-135, 1992.
9.
P. F. Muir and C. P. Neuman, "Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot", Proc. IEEE Conf. Robotics and Automation, pp. 1772-1778, 1987.
10.
S. M. Killough and F. G. Pin, "Design of an omnidirectional and holonomic wheeled platform design", Proc. IEEE Conf. Robotics and Automation, pp. 84-90, 1992.
11.
B. d'Andre´a-Novel, G. Bastin and G. Campion, "Modeling and Control of nonholonomic wheeled mobile robots", Proc. IEEE Conf. Robotics and Automation, pp. 1130-1135, 1991.
12.
P. F. Muir and C. P. Neuman, "Kinematic modeling of wheeled mobile robots", J. Robotic Syst., vol. 4, no. 2, pp. 281-329, 1987.
13.
J. C. Alexander and J. H. Maddocks, "On the kinematics of wheeled mobile robots", Int. J. Robotics Res., vol. 8, no. 5, pp. 15-27, 1989.
14.
C. Helmers, "Ein Hendenleben (or A hero's life)", Robotics Age, vol. 5, no. 2, pp. 7-16, Mar. 1983.
15.
C. Balmer, "Avatar: A home built robot", Robotics Age, vol. 4, no. 1, pp. 20-25, Jan. 1988.
16.
J. M. Holland, "Rethinking robot mobility", Robotics Age, vol. 7, no. 1, pp. 26-30, Jan. 1988.
17.
H. Nijmeijer and A. J. Van der Schaft, Nonlinear Dynamical Control Systems, 1990.
19.
R. Marino, "On the largest feedback linearizable subsystem", Syst. Contr. Lett., vol. 6, pp. 345-351, 1986.
20.
P. Martin, Contribution a` l'e´tude des syste`mes diffe´rentiellement plats, 1992.
21.
B. d'Andre´a-Novel, G. Campion and G. Bastin, "Control of nonholonomic wheeled mobile robots by state feedback linearization", J. Robotics Res..
22.
"Asymptotic stability and feedback stabilization", Differential Geometric Control Theory, pp. 181-191, 1983.
23.
J. M. Coron, "Global asymptotic stabilization for controllable systems without drift", M.C.S.S., vol. 5, pp. 295-312, 1992.
24.
J. B. Pomet, "Explicit design of time-varying stabilizing control laws for a class of time varying controllable systems whithout drift", Syst. Contr. Lett., vol. 18, pp. 147-158, 1992.
25.
G. Campion, B. d'Andre´a-Novel and G. Bastin, "Controllability and state feedback stabilization of nonholonomic mechanical systems", Advanced Robot Control, no. 162, pp. 106-124, 1990.
26.
A. M. Bloch, N. H. McClamroch and M. Reyhanoglu, "Control and stabilization of nonholonomic dynamic systems", IEEE Trans. Automat. Contr., vol. 37, pp. 1746-1757, 1992.
27.
G. Campion, B. d'Andre´a-Novel and G. Bastin, "Modeling and state feedback control of nonholonomic mechanical systems", IEEE Conf. Decision and Control, pp. 1184-1189, 1991.