Digital Control of Resonant Converters: Enhancing Frequency Resolution by Dithering | IEEE Conference Publication | IEEE Xplore

Digital Control of Resonant Converters: Enhancing Frequency Resolution by Dithering


Abstract:

Resonant converters and related systems, such as piezoelectric transformers, may require a high-resolution frequency drive when the quality factor of the network is high ...Show More

Abstract:

Resonant converters and related systems, such as piezoelectric transformers, may require a high-resolution frequency drive when the quality factor of the network is high or to avoid limit cycle oscillations. This high frequency resolution requirement could be beyond the capabilities of low cost microcontrollers. To remedy this problem, a frequency resolution enhancement algorithm was developed, tested by simulations and verified experimentally. The proposed approach is based on a modification of the fractional-N dithering concept and includes an adaptive dithering period and smooth DPWM frequency transitions. The implementation of the approach on the digital hardware is simple and requires modest additional workload from the CPU. Theoretical analysis was carried out to model the proposed dithering method when applied to drive resonant network in order to identify the causes and to quantify the expected output signal distortion when the signal is used to drive resonant networks. The proposed approach was tested experimentally on two types of resonant converters: a series-resonant parallel-loaded converter and a piezoelectric transformer. It was found that the output signal distortion is less than 1% of the peak amplitude of the output drive which would be acceptable in many applications. The experimental results were found to be in excellent agreement with the theoretical predictions, validating the usefulness of the dithering method as a frequency resolution enhancer for resonant network drive.
Date of Conference: 15-19 February 2009
Date Added to IEEE Xplore: 21 March 2009
ISBN Information:
Print ISSN: 1048-2334
Conference Location: Washington, DC, USA

I. Introduction

In a variety of applications, variable frequency is the preferred method for output regulation of resonant converter (e.g. fluorescent lamp ballasts piezoelectric devices) [1]–[3]. In such cases, the frequency resolution of the drive is crucial to ensure accurate operating conditions and the desired load performance.

Contact IEEE to Subscribe

References

References is not available for this document.