Loading web-font TeX/Math/Italic
Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator | IEEE Journals & Magazine | IEEE Xplore

Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator


Abstract:

An operational transconductance amplifier (OTA) is a major building block and consumes most of the power in switched-capacitor (SC) circuits, but it is difficult to desig...Show More

Abstract:

An operational transconductance amplifier (OTA) is a major building block and consumes most of the power in switched-capacitor (SC) circuits, but it is difficult to design low-voltage OTAs in scaled CMOS technologies. Instead of using an OTA, this paper proposes an inverter-based SC circuit and its application to low-voltage, low-power delta-sigma (DeltaSigma) modulators. Detailed analysis and design optimizations are also provided. Three inverter-based DeltaSigma modulators are implemented for an implantable pacemaker, a CMOS image sensor, and an audio codec. The modulator-I for an implantable pacemaker achieves 65-dB peak-SNDR for 120-Hz bandwidth consuming 0.73 muW with 1.5 V supply. The modulator-II for a CMOS image sensor implemented with 320-channel parallel ADC architecture achieves 63-dB peak-SNDR for 8-kHz bandwidth consuming 5.6 muW for each channel with 1.2-V supply. The modulator-III for an audio codec achieves 81-dB peak-SNDR with 20-kHz bandwidth consuming 36 muW with 0.7-V supply. The prototype DeltaSigma modulators achieved high power efficiency maintaining sufficient performances for practical applications.
Published in: IEEE Journal of Solid-State Circuits ( Volume: 44, Issue: 2, February 2009)
Page(s): 458 - 472
Date of Publication: 27 January 2009

ISSN Information:

References is not available for this document.

I. Introduction

The continuing feature size scaling in CMOS technology has enabled the digital system to decrease power consumption and lower costs while also increasing reliability. The supply voltages must be scaled along with transistor dimension to maintain the device's reliability. However, the threshold voltage is not scaled as aggressively as the supply voltage to avoid leakage current in transistors. Therefore, the design of low-voltage analog circuits in the scaled CMOS technology poses significant challenges. Especially, the design of an operational transconductance amplifier (OTA), a key analog building block, has been the main bottleneck in low-voltage analog circuits. Low voltage OTAs have been explored [1]–[3], but the supply voltages of the OTAs are restricted and have reached the limits of further scaling, because they are strictly limited by the input common-mode voltage.

Select All
1.
L. Yao, M. S. J. Steyaert and W. Sansen, " A 1-V 140- mu W 88-dB audio sigma-delta modulatorin 90-nm CMOS ", IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1809-1818, Nov. 2004.
2.
J. Goes, B. Vaz, R. Monteiro and N. Paulino, " A 0.9-V Delta Sigma modulator with 80 dB SNDR and83 dB DR using a single-phase technique ", IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 74-75, 2006-Feb.
3.
P. Y. Wu, V. S. -L. Cheung and H. C. Luong, "A 1-V 100-MS/s 8-bit CMOS switched-opamppipelined ADC using loading-free architecture", IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 730-738, Apr. 2007.
4.
K.-P. Pun, S. Chatterjee and P. Kinget, " A 0.5-V 74-dB SNDR 25 kHz CT Delta Sigma modulatorwith return-to-open DAC ", IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 72-73, 2006-Feb.
5.
B. Murmann and B. Boser, "A 12-bit 75-MS/s pipelined ADC using open-loopresidue amplification", IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040-2050, Dec. 2003.
6.
E. Siragusa and I. Galton, "A digitally enhanced 1.8-V15-bit 40-MSample/s CMOS pipelined ADC", IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2126-2138, Dec. 2004.
7.
S. S. Rajput and S. S. Jamuar, "Low voltage analog circuitdesign techniques", IEEE Circuits Syst. Mag., vol. 2, no. 1, pp. 24-42, May 2002.
8.
J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini and H.-S. Lee, "Comparator-based switched-capacitor circuitsdor scaled CMOS technologies", IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2658-2668, Dec. 2006.
9.
H. Yang and R. Sarpeshkar, "A time-based energy-efficientanalog-to-digital converter", IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1590-1601, Aug. 2005.
10.
S. Paul, H.-S. Lee, J. Goodrich, T. Alailima and D. Santiago, "A Nyquist-rate pipelined oversamplingA/D converter", IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1777-1787, Dec. 1999.
11.
B. J. Hosticka, "Dynamic CMOS amplifiers", IEEE J. Solid-State Circuits, vol. 14, pp. 1111-1114, Dec. 1979.
12.
F. Krummenacher, "Micropower switched capacitorbiquadratic cell", IEEE J. Solid-State Circuits, vol. 17, pp. 507-512, June 1982.
13.
B. Nauta, "A CMOS transconductance-C filtertechnique for very high frequencies", IEEE J. Solid-State Circuits, vol. 27, pp. 142-153, Feb. 1992.
14.
M. Kwon, Y. Chae and G. Han, " Sub- mu W switched-capacitor circuits using class-C inverter ", IEICE Trans. Fundamentals, vol. E88-A, no. 5, pp. 1313-1319, May 2005.
15.
R. H. M. van Veldhoven, R. Rutten and L. J. Breems, " An inverter-based hybrid Sigma Delta modulator ", IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 492-493, 2008-Feb.
16.
Y. Chae and G. Han, "A low power sigma-delta modulator usingclass-C inverter", Symp. VLSI Circuits Dig., pp. 240-241, 2007-Jun.
17.
Y. Chae, I. Lee and G. Han, " A 0.7-V 36- mu W 85 dB-DR audio DeltaSigma modulator using class-C inverter ", IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 490-491, 2008-Feb.
18.
L. Wu, M. Keskin, U. Moon and G. Temes, "Efficient common-mode feedback circuits for pseudo-differentialswitched-capacitor stages", Proc. IEEE Int. Symp. Circuits and Systems, vol. V, pp. 445-448, 2000-May.
19.
D. Miyazaki, S. Kawahito and M. Furuta, "A 10-b 30-MS/s low-power pipelinedCMOS A/D converter using a pseudodifferential architecture", IEEE J. Solid-State Circuits, vol. 38, pp. 369-373, Feb. 2003.
20.
J. M. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits, NJ, Englewood Cliffs:Prentice-Hall, 2002.
21.
S. Tedja, J. Van der Spiegel and H. H. Williams, "Analytical and experimentalstudies of thermal noise in MOSFETs", IEEE Trans. Electron Devices, vol. 41, pp. 2069-2075, Nov. 1994.
22.
C. C. Enz and G. C. Temes, "Circuit techniques for reducingthe effects of op-amp imperfections: Autozeroing correlated double samplingand chopper stabilization", Proc. IEEE, vol. 84, pp. 584-1614, 1996-Nov.
23.
K. Martin and A. S. Sedra, "Effects of the op amp finitegain and bandwidth on the performance of switched-capacitor filters", IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug. 1981.
24.
D. Johns and K. Martin, Analog Integrated Circuit Design, New York:Wiley, 1997.
25.
S. Norsworthy, R. Schreier and G. Temes, Delta-Sigma Data Converters: Theory Design and Simulation, New York:IEEE Press, 1996.
26.
V. Peluso, M. S. J. Steyaert and W. Sansen, " A 1.5-V 100- mu W Delta Sigma modulator with 12-b dynamicrange using the switched-opamp technique ", IEEE J. Solid-State Circuits, vol. 32, pp. 943-951, Jul. 1997.
27.
L. S. Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas and H. Naas, "A very low-power CMOS mixed-signal IC for implantable pacemakerapplications", IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2446-2456, Dec. 2004.
28.
V. Peluso, P. Vancorenland, A. Marques, M. Steyaert and W. Sansen, " A 900-mW low-power Delta Sigma A/Dconverter with 77-dB dynamic range ", IEEE J. Solid-State Circuits, vol. 33, pp. 1887-1897, Dec. 1998.
29.
T. B. Cho and P. R. Gray, "A 10 b 20 Msample/s 35 mWpipeline A/D converter", IEEE J. Solid-State Circuits, vol. 30, pp. 166-172, Mar. 1995.
30.
S. Yoshihara, "A 1/1.8-inch 6.4 Mpixel60 frames/s CMOS image sensor with seamless mode change", IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2998-3006, Dec. 2006.

Contact IEEE to Subscribe

References

References is not available for this document.