Abstract:
We demonstrate simple rules for the scaling of per-carrier Stark-shifted nonlinearities with well number, electric field, amplitude and width of the excitonic transition ...Show MoreMetadata
Abstract:
We demonstrate simple rules for the scaling of per-carrier Stark-shifted nonlinearities with well number, electric field, amplitude and width of the excitonic transition by measuring the per carrier nonlinear response of a number of multiple-quantum-well structures as a function of temperature, bias and materials system. These measurements illustrate that the per-carrier nonlinearity can be improved by optimizing the in-well bias field and by increasing the number of wells per intrinsic region; however, they also demonstrate that when the measured per-carrier nonlinearities are corrected for material quality and temperature (i.e., excitonic amplitude and linewidth) that the per-carrier response does not depend appreciably on material system or on whether the fields are externally-applied, built-in, or intrinsic.<>
Published in: IEEE Journal of Quantum Electronics ( Volume: 31, Issue: 10, October 1995)
DOI: 10.1109/3.466045
References is not available for this document.
Select All
1.
D. A. B. Miller, D. S. Chemla, T C. Damen, A C. Gossard, W. Wiegmann, T. H. Wood, et al., "Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device", Appl. Phys. Lett., vol. 45, pp. 13-15, 1984.
2.
S. Schmitt-Rink, D. S. Chemla and D. A. B. Miller, "Linear and nonlinear optical properties of quantum wells", Advances in Phys., vol. 38, pp. 2-188, 1989.
3.
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, et al., "Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect", Phys. Rev. Lett., vol. 53, pp. 2173-2176, 1984.
4.
A. L. Lentine and D. A. B. Miller, "Evolution of the SEED technology: Bistable logic gates to optoelectronic smart pixels", IEEE J. Quantum Electron., vol. 29, pp. 655-669, 1993.
5.
G. H. Dohler, P. Kiesel, H. Lin, P. Riei, K. Ebeling and J. N. Miller, "A n-i-p-i based new concept for optical logic gates", Proc. SPIE, vol. 1283, pp. 103-117, 1990.
6.
J. Maseijian, P. O. Andersson, B. R. Hancock, J. M. Iannelli, S. T. Eng, F. J. Grunthaner, et al., "Optically addressed spatial light modulators by MBE-grown nipi MQW structures", Appl. Opt., vol. 28, pp. 4801-4807, 1989.
7.
K. W. Goosen, E. A. Caridi, T. Y. Chang, J. B. Stark, D. A. B. Miller and R. A. Morgan, "Observation of room temperature blue shift and testability in a strained InGaAs-GaAs (111) self-electro-optic effect device", Appl. Phys. Lett., vol. 56, pp. 715-717, 1990.
8.
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, et al., "Novel hybrid optically bistable switch: the quantum well self-electro-optic effect device", Appl. Phys. Lett., vol. 45, pp. 13-15, 1984.
9.
T. K. Woodward, T. Sizer, D. L. Sivco and A. Y. Cho, "InxGa1-xAs/Ga As multiple quantum well modulators for the 1.02-1.07 mm wavelength range", Appl. Phys. Lett., vol. 57, pp. 548-550, 1990.
10.
G. Lengyel, K. W. Jelley and R. W. H. Engelmann, "A semi-empirical model for electroabsorption in GaAs/AlGaAs multiple quantum well modulator structures", IEEE J. Quantum Electron., vol. 26, pp. 296-304, 1990.
11.
D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard and W. Wiegmann, "Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures", IEEE J. Quantum Electron., vol. 20, pp. 265-275, 1984.
12.
C.-H Lin, J. M. Meese and Y.-C. Chang, "Optical properties of GaAs/AlxGa1-xAs multiple quantum wells versus electric field including exciton transition broadening effects in optical modulators", J. Appl. Phys., vol. 75, pp. 2618-2627, 1994.
13.
D. S. Chemla, D. A. B. Miller and P. W. Smith, "Nonlinear optical properties of GaAs/GaAlAs multiple quantum well material: Phenomena and applications", Opt. Eng., vol. 24, pp. 556-564, 1985.
14.
D. S. Chemla and D. A. B. Miller, "Room temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures", J. Opt. Soc. Am. B., vol. 2, pp. 1155-1173, 1985.
15.
A. Miller, R. J. Manning, P. K. Milsom, D. C. Hatchings, D. W. Crust and K. Woodbridge, "Transient grating studies of excitonic optical nonlinearities in GaAs/AlGaAs multiple quantum well structures", J. Opt. Soc. Am. B., vol. 6, pp. 567-568, 1989.
16.
K. Tai, J. Hegarty and W. T. Tsang, "Nonlinear spectroscopy in InO.53GaO.47As/InP multiple quantum wells", Appl. Phys. Lett., vol. 51, pp. 86-88, 1987.
17.
D. A. B. Miller, J. S. Weiner and D. S. Chemla, "Electric-field dependence of linear optical properties in quantum well structures: waveguide electroabsorption and sum rules", IEEE J. Quantum Electron., vol. 22, pp. 1816-1830, 1986.
18.
W. Chen and T. G. Andersson, "Quantum-confined Stark shift for differently shaped quantum wells", Semiconduct. Sci. Technol., vol. 7, pp. 828-836, 1992.
19.
A. N. Cartwright, X. R. Huang, D. S. McCallum and A. L. Smirl, Nonlinear Optical Measurement of Recombination in hetero n-i-p-i's.
20.
D. S. McCallum, A. N. Cartwright, A. L. Smirl, W. Tseng, J. G. Pellegrino and J. Comas, "Enhancement of the per-carrier nonlinear cross sections in GaAs/AlGaAs hetero n-i-p-i's", IEEE J. Quantum Electron., vol. 30, pp. 2790-2797, 1994.
21.
X. R. Huang, D. R. Harken, A. N. Cartwright, D. S. McCallum, A. L. Smirl, J. L. Sanchez-Rojas, et al., "Nonlinear optical response screening and distribution of strain in piezoelectric multiple quantum wells", J. Appl. Phys., vol. 76, pp. 7870-7873, 1995.
22.
X. R. Huang, D. R. Harken, A. N. Cartwright, A. L. Smirl, J. L. Sánchez-Rojas, A. Sacedñ, et al., "In-well Screening Nonlinearities in Piezoelectric Multiple Quantum Wells", Appl. Phys Lett., 1995.
23.
X. R. Huang, A. N. Cartwright, D. R. Harken, D. S. McCallum, A. L. Smirl, J. L. S£nchez-Rojas, et al., Per-carrier nonlinear optical response of [lll]-oriented piezoelectric InGaAs/GaAs multiple quantum wells.