Loading web-font TeX/Main/Regular
AlGaN/GaN MOS-HEMT With - Dielectric and - Interfacial Passivation Layer Grown by Atomic Layer Deposition | IEEE Journals & Magazine | IEEE Xplore

AlGaN/GaN MOS-HEMT With \hbox{HfO}_{2} Dielectric and \hbox{Al}_{2}\hbox{O}_{3} Interfacial Passivation Layer Grown by Atomic Layer Deposition


Abstract:

We have developed a novel AlGaN/GaN metal–oxide–semiconductor high-electron mobility transistor using a stack gate \hbox{HfO}_{2}/\hbox{Al}_{2}\hbox{O}_{3} structure g...Show More

Abstract:

We have developed a novel AlGaN/GaN metal–oxide–semiconductor high-electron mobility transistor using a stack gate \hbox{HfO}_{2}/\hbox{Al}_{2}\hbox{O}_{3} structure grown by atomic layer deposition. The stack gate consists of a thin \hbox{HfO}_{2} (30-\hbox{\rm{\AA}}) gate dielectric and a thin \hbox{Al}_{2}\hbox{O}_{3} (20- \hbox{\rm{\AA}}) interfacial passivation layer (IPL). For the 50-\hbox{\rm{\AA}} stack gate, no measurable CV hysteresis and a smaller threshold voltage shift were observed, indicating that a high-quality interface can be achieved using a \hbox{Al}_{2}\hbox{O}_{3} IPL on an AlGaN substrate. Good surface passivation effects of the \hbox{Al}_{2}\hbox{O}_{3} IPL have also been confirmed by pulsed gate measurements. Devices with 1- \mu\hbox{m} gate lengths exhibit a cutoff frequency (f_{T}) of 12 GHz and a maximum frequency of oscillation (f_{\rm MAX}) of 34 GHz, as well as a maximum drain current of 800 mA/mm and a peak transconductance of 150 mS/mm, whereas the gate leakage current is at least six orders of magnitude lower than that of the reference high-electron mobility transistors at a positive gate bias.
Published in: IEEE Electron Device Letters ( Volume: 29, Issue: 8, August 2008)
Page(s): 838 - 840
Date of Publication: 31 August 2008

ISSN Information:

References is not available for this document.

I. Introduction

The major factors that limit the performance and reliability of AlGaN/GaN high-electron mobility transistors (HEMTs) for high-power radio frequency and high-temperature applications are their high gate leakage and drain current collapse. Significant progress has been made on GaN/AlGaN metal–oxide–semiconductor HEMTs (MOS-HEMTs) using [1], [2], [3], [4]–[6], and [7] as the gate dielectrics to suppress the aforementioned problems but at the expense of a significant decrease in device transconductance [4] and a large threshold voltage shift [5], [6]. The use of dielectrics with high permittivity (high ) could help solve these problems, because a larger dielectric constant could translate to a more efficient gate modulation [8]; thus, a smaller decrease in transconductance and a moderate increase in the threshold voltage could be expected in MOS-HEMTs with high- gate dielectrics. , having a high dielectric constant (20 25) and being highly insulating with a large bandgap (5.6 5.8 eV), has been studied extensively as the gate dielectric in Si MOS field-effect transistors [9]. Recently, dielectric films on a GaN surface using reactive sputtering [8] and atomic layer deposition (ALD) [10] have been reported. However, a major obstacle is the lack of high-quality and thermodynamically stable insulators on III–V semiconductors with a low interface state density and a good interfacial layer comparable to that of the interface.

Select All
1.
M. Asif Khan, X. Hu, A. Tarakji, G. Simin and J. Yang, "AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates", Appl. Phys. Lett., vol. 77, no. 9, pp. 1339-1341, Aug. 2000.
2.
X. Hu, A. Koudymov, G. Simin, J. Yang and M. Asif Khan, "hbox{Si}_{3}hbox{N}_{4}/AlGaN/GaN–metal–insulator–semiconductor heterostructure field–effect transistors", Appl. Phys. Lett., vol. 79, no. 17, pp. 2832-2834, Oct. 2001.
3.
C. T. Lee, H. W. Chen and H. Y. Lee, "Metal–oxide–semiconductor devices using hbox{Ga}_{2}hbox{O}_{3} dielectrics on n-type GaN", Appl. Phys. Lett., vol. 82, no. 24, pp. 4304-4306, Jun. 2003.
4.
P. D. Ye, B. Yang, K. K. Ng and J. Bude, "GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited hbox{Al}_{2}hbox{O}_{3} as gate dielectric", Appl. Phys. Lett., vol. 86, no. 9, pp. 063501, Jan. 2005.
5.
Y. Z. Yue, Y. Hao, Q. Feng, J. C. Zhang, X. H. Ma and J. Y. Ni, "GaN MOS-HEMT using ultrathin hbox{Al}_{2}hbox{O}_{3} dielectric grown by atomic layer deposition", Chin. Phys. Lett., vol. 24, no. 8, pp. 2419-2422, Aug. 2007.
6.
Y. Hao, Y. Z. Yue, Q. Feng, J. C. Zhang, X. H. Ma and J. Y. Ni, "GaN MOS-HEMT using ultrathin hbox{Al}_{2}hbox{O}_{3} dielectric with {rm f}_{max} of 30.8 GHz", Chin. J. Semicond., vol. 28, no. 11, pp. 1674-1678, Nov. 2007.
7.
R. Mehandru, B. Luo, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, et al., "AlGaN/GaN metal–oxide–semiconductor high electron mobility transistors using hbox{Sc}_{2}hbox{O}_{3} as the gate oxide and surface passivation", Appl. Phys. Lett., vol. 82, no. 15, pp. 2530-2532, Apr. 2003.
8.
C. Liu, E. F. Chor and L. S. Tan, "Investigations of hbox{HfO}_{2}/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors", Appl. Phys. Lett., vol. 88, no. 9, pp. 173504, Apr. 2006.
9.
E. P. Gusev, V. Narayanan and M. M. Frank, "Advanced high-k dielectric stacks with poly Si and metal gates: Recent progress and current challenges", IBM J. Res. Develop., vol. 50, no. 4/5, pp. 387-410, Jul.Sep. 2006.
10.
Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee and M. Hongb, "Structural and electrical characteristics of atomic layer deposited high k hbox{HfO}_{2} on GaN", Appl. Phys. Lett., vol. 90, no. 9, pp. 232904, Jun. 2007.
11.
P. Kordos, G. Heidelberger, J. Bernat, A. Fox, M. Marso and H. Luth, "High-power hbox{SiO}_{2}/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors", Appl. Phys. Lett., vol. 87, no. 14, pp. 143501, Sep. 2005.
12.
M. Asif Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, et al., "AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor", IEEE Electron Device Lett., vol. 21, no. 2, pp. 63-65, Feb. 2000.
13.
M. Marso, G. Heidelberger, K. M. Indlekofer, J. Bernat, A. Fox, P. Kordos, et al., "Origin of improved RF performance of AlGaN/GaN MOSHFETs compared to HFETs", IEEE Trans. Electron Device, vol. 53, no. 7, pp. 1517-1523, Jul. 2006.
14.
V. Adivarahan, M. Gaevski, A. Koudymov, J. Yang, G. Simin and M. Asif Khan, "Selectively doped high-power AlGaN/InGaN/GaN MOS-DHFET", IEEE Electron Device Lett., vol. 28, no. 3, pp. 192-194, Feb. 2007.
15.
T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, et al., "Influence of the dynamic access resistance in the {rm g}_{rm m} and {rm f}_{T} linearity of AlGaN/GaN HEMTs", IEEE Trans. Electron Device, vol. 52, no. 10, pp. 2117-2122, Oct. 2005.

Contact IEEE to Subscribe

References

References is not available for this document.