Loading [MathJax]/extensions/MathMenu.js
Design of Stable Single-Mode Chaotic Light Source Using Antiresonant Reflecting Optical Waveguide Vertical-Cavity Surface-Emitting Lasers | IEEE Journals & Magazine | IEEE Xplore

Design of Stable Single-Mode Chaotic Light Source Using Antiresonant Reflecting Optical Waveguide Vertical-Cavity Surface-Emitting Lasers


Abstract:

The influence of external optical feedback (EOFB) on the lasing characteristics of 1.55-mum antiresonant reflecting optical waveguide (ARROW) vertical-cavity surface-emit...Show More

Abstract:

The influence of external optical feedback (EOFB) on the lasing characteristics of 1.55-mum antiresonant reflecting optical waveguide (ARROW) vertical-cavity surface-emitting lasers (VCSELs) with various core radii are analyzed theoretically. It is found that ARROW VCSELs with large core radii (i.e., > 4 mum) respond more sensitively to EOFB than that with small core radii (i.e., les 4 mum). Furthermore, strong EOFB-driven ARROW VCSELs with large radii show more difficult to sustain single-mode chaotic oscillation than those with small radii. This is because radiation loss margin of ARROW reduces with the increase of core radii so that the presence of carrier spatial-hole burning deteriorates the stable single-mode operation of VCSELs. However, if the dimensions of ARROW as well as the radius of injection current aperture can be selected appropriately, stable single-mode chaotic light sources can be obtained from EOFB-driven ARROW VCSELs with large core radius.
Published in: IEEE Journal of Quantum Electronics ( Volume: 44, Issue: 4, April 2008)
Page(s): 338 - 345
Date of Publication: 25 February 2008

ISSN Information:

References is not available for this document.

I. Introduction

Lasing characteristics of semiconductor lasers under the influence of external optical feedback (EOFB) have been studied extensively for the past 3 decades [1]–[3]. It has been shown that an EOFB-driven laser, which demonstrates rich nonlinear dynamics, can be a very complex nonlinear system. However, the better understanding of these nonlinear dynamics allows the use of semiconductor lasers with EOFB to generate as well as synchronize chaotic signals for the applications in chaotic system [4]–[7]. Due to the advantages (i.e., low-threshold current, single-longitudinal-mode, low beam divergence, and low production cost) of vertical-cavity surface-emitting lasers (VCSELs) over the conventional facet emitting lasers, researchers have shown great interests to realize chaotic lasing sources by using VCSELs. In fact, synchronizations between two chaotic VCSELs with bidirectional and unidirectional coupling have been demonstrated [8]–[10]. The suitability of VCSELs to chaotic optical communication has also been verified [11], [12]. Unfortunately, the excitation of multiple-transverse-modes inside VCSELs always weakens the synchronization and decoding performances of the chaotic communication system [13], [14].

Select All
1.
R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injectionlaser properties", IEEE J. Quantum Electron., vol. 16, no. 3, pp. 347-355, Mar. 1980.
2.
K. Petermann, "External optical feedback phenomena in semiconductorlasers", IEEE J. Sel. Top. Quantum Electron., vol. 1, no. 2, pp. 480-489, Jun. 1995.
3.
S. F. Yu, "Nonlinear dynamics of vertical-cavity surface-emitting lasers", IEEE J. Quantum Electron., vol. 35, no. 3, pp. 332-341, Mar. 1999.
4.
L. M. Pecora and T. L. Carrol, "Synchronization in chaotic system", Phys. Rev. Lett., vol. 64, no. 8, pp. 821-824, Feb. 1990.
5.
G. D. VanWiggeren and R. Roy, "Communications with chaotic lasers", Science, vol. 279, pp. 1198-1220, Feb. 1998.
6.
J. Ohtsubo, "Chaos synchronization and chaotic signalmasking in semiconductor lasers with optical feedback", IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1141-1154, Sep. 2002.
7.
X. F. Li, W. Pan, B. Luo and D. Ma, "Mismatch robustness and securityof chaotic optical communications based on injection-locking chaos synchronization", IEEE J. Quantum Electron., vol. 42, no. 9, pp. 953-960, Sep. 2006.
8.
P. S. Spencer and C. R. Mirasso, "Analysis of optical chaos synchronizationin frequency-detuned external-cavity VCSEL's", IEEE J. Quantum Electron., vol. 35, no. 5, pp. 803-809, May 1999.
9.
N. Fujiwara, Y. Takiguchi and J. Ohtsubo, "Observation of the synchronization of chaosin mutually injected vertical-cavity surface-emitting semiconductor lasers", Opt. Lett., vol. 28, no. 18, pp. 1677-1679, Sep. 2003.
10.
Y. H. Hong, M. W. Lee, P. S. Spencer and K. A. Shore, "Synchronization of chaos in unidirectionallycoupled vertical-cavity surface-emitting semiconductor lasers", Opt. Lett., vol. 29, no. 11, pp. 1215-1217, Jun. 2004.
11.
Y. H. Hong, M. W. Lee and K. A. Shore, "Chaotic optical data encryption using external-cavity VCSELs", Proc. SPIE, vol. 5614, no. 72, pp. 72-78, 2004.
12.
M. W. Lee, Y. H. Hong and K. A. Shore, "Experimental demonstration of VCSEL-basedchaotic optical communications", IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2392-2394, Oct. 2004.
13.
H. Zhang, G. Mrozynski, A. Wallrabenstein and J. Schrage, "Analysis of transverse mode competition of VCSELs basedon a spatially independent model", IEEE J. Quantum Electron., vol. 40, no. 1, pp. 18-24, Jan. 2004.
14.
V. N. Morozov, J. A. Neff and H. Zhou, "Analysis of vertical-cavity surface-emitting laser multimodebehavior", IEEE J. Quantum Electron., vol. 33, no. 6, pp. 980-988, Jun. 1997.
15.
D. Zhou and L. J. Mawst, "High-power single-mode antiresonant reflecting optical waveguide-typevertical-cavity surface-emitting lasers", IEEE J. Quantum Electron., vol. 38, no. 12, pp. 1599-1606, Dec. 2002.
16.
C. W. Tee, S. F. Yu and N. S. Chen, "Transverse-leaky-mode characteristics of ARROW VCSELs", J. Lightw. Technol., vol. 22, no. 7, pp. 1797-1804, Jul. 2004.
17.
N. S. Chen, S. F. Yu and C. W. Tee, "Suppression of polarization switching in birefringent antiresonantreflecting optical waveguide vertical-cavity surface-emitting lasers", IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 711-713, Mar. 2004.
18.
S. F. Yu, "Polarization selection in birefringent antiresonant reflectingoptical waveguide-type vertical-cavity surface-emitting lasers", IEEE J. Quantum Electron., vol. 39, no. 11, pp. 1362-1371, Nov. 2003.
19.
N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, D. V. Vysotsky, T. W. Lee, S. C. Hagness, et al., "Antiresonant reflecting optical waveguide-type vertical-cavitysurface emitting lasers: Comparison of full-vector finite-difference time-domainand 3-D bidirectional beam propagation methods", J. Lightw. Technol., vol. 24, no. 4, pp. 1834-1842, Apr. 2006.
20.
G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, New York:Van Nostran Reinhold, 1993.
21.
X. F. Li, W. Pan, D. Ma and B. Luo, "Chaos synchronization of unidirectionallyinjected vertical-cavity surface-emitting lasers with global and mode-selectivecoupling", Opt. Exp., vol. 14, no. 8, pp. 3138-3151, Apr. 2006.
22.
N. K. Dutta, "Analysis of current spreading carrier diffusionand transverse mode guiding in surface emitting lasers", Appl. Phys., vol. 68, no. 5, pp. 1961-1963, Sep. 1990.
23.
J. Y. Law and G. P. Agrawal, "Effects of optical feedback on static anddynamic characteristics of vertical-cavity surface-emitting lasers", IEEE J. Sel. Top. Quantum Electron., vol. 3, no. 2, pp. 353-358, Feb. 1997.

References

References is not available for this document.