I. Introduction
Injection-Locked oscillators are used at microwave frequencies for oscillator stabilization, amplification, phase shifting, quadrature generation, frequency division, and other applications [1]–[11]. In a fundamentally synchronized oscillator, the output phase noise copies that of the synchronizing source up to a certain offset frequency [12]. From that offset frequency, the output phase-noise spectrum is different from the input one, typically with higher power. Similar behavior is obtained in the case of a frequency divider: the output phase noise is a sub-multiple of that of the input source, up to a certain offset frequency. When using harmonic balance (harmonic balance), the conversion matrix approach [13]–[15] enables an accurate prediction of the oscillator phase noise. However, this numerical technique provides little insight into the parameters and magnitudes that give the output phase-noise spectrum of the oscillator or divider its particular shape. This knowledge would be useful from a design point of view, as strategies could be devised in order to reduce the output phase noise. This phase-noise reduction can be achieved by increasing the offset-frequency range for which the oscillator circuit behaves like a low-pass filter with respect to the input phase noise.